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Abstract

Automatic Vascular Model Construction from Medical Imaging Using Deep Learning

by

Númi Sveinsson Cepero

Doctor of Philosophy in Mechanical Engineering

University of California, Berkeley

Professor Shawn C. Shadden, Chair

Computational modeling of the cardiovascular system plays a vital role in understanding, di-
agnosing, and treating cardiovascular disease. However, traditional workflows for generating
simulation-ready, patient-specific models are time-consuming, requiring extensive manual
labor for geometric reconstruction and simulation setup. This dissertation introduces deep
learning based methods designed to automate and accelerate the construction of image-based
models to support hemodynamics simulation.

First, we present SeqSeg (Sequential Segmentation), a novel deep learning method for auto-
matic vascular segmentation. SeqSeg leverages a local U-Net-based architecture to iteratively
track and segment vascular structures from medical imaging data. Compared to standard
2D and 3D global models such as nnU-Net, SeqSeg generates more complete vascular models
and generalizes better to unannotated anatomy, enabling efficient geometric modeling from
computed tomography (CT) and magnetic resonance (MR) data.

Building upon this, we introduce MeshGrow, an integrated framework that combines auto-
matic vascular and cardiac modeling to generate combined cardiovascular anatomies. Mesh-
Grow can reconstruct both the heart and great vessels by employing a template deformation
approach for the cardiac chambers and a step-wise growth-based method for vascular struc-
tures. The result is a simulation-ready mesh, including valve boundaries, constructed directly
from medical images with minimal human intervention.

In the third part of this work, we present MIROS (Medical Image to Reduced Order Simu-
lation), a fully automated pipeline for performing reduced-order cardiovascular simulations.
MIROS integrates SeqSeg-based geometry generation with reduced order modeling of blood
flow and semi-automatic boundary condition assignment to produce hemodynamic simu-
lations within minutes. This approach significantly reduces the computational and manual
burden traditionally required, enabling rapid, patient-specific analyses and facilitating large-
scale studies.
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Finally, building on SeqSeg and inspired by advances in human trajectory forecasting, we
propose VesselTrajNet, a novel method for vasculature tracking in medical images. By
adapting a U-Net-based Gaussian heat map encoder-decoder architecture for multiple goal-
driven path prediction, VesselTrajNet accurately models complex vascular branching without
requiring explicit bifurcation detection. We demonstrate its utility on coronary artery CT
data, underscoring its potential for diagnostic and interventional imaging.

Together, these contributions advance the state of the art in automated cardiovascular mod-
eling and simulation. By harnessing deep learning for the modeling pipeline, this work aims
to make high-fidelity cardiovascular simulations more accessible, scalable, and clinically rel-
evant.
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Chapter 1

Introduction

1.1 Background and Motivation

Cardiovascular disease remains a leading global cause of morbidity and mortality, resulting
in significant suffering through disability, pain, and premature death. Computational mod-
eling of the cardiovascular system provides a patient-specific framework for understanding
disease mechanisms, predicting progression, and informing treatment design. Specifically,
image-based cardiovascular modeling is used for a variety of purposes including diagnos-
ing, personalized treatment planning and fundamental understanding of disease progression
[86, 79, 6, 109]. In this modeling paradigm, a medical image is used for patient-specific
reconstruction of anatomy that is subsequently used to model fluid dynamics, tissue me-
chanics, electromechanics or mass transport of the organ of interest (e.g. cardiac chambers,
vasculature, valves).

Figure 1.1 shows typical patient-specific computational modeling workflow. The inputs
to the patient-specific model is processed personalized data (e.g. mesh of the aorta) and non-
personalized data (e.g. average viscosity of blood). The patient-specific model includes the
governing equations of interest, for example the Navier-Stokes equations for fluid dynamics,
as well as necessary initial and boundary conditions. Then a numerical solver is used to
solve the governing equations on the patient-specific domain given the initial and boundary
conditions. The output solutions, simulations, can then be used to make personalized clinical
predictions.

Specialized software has been developed for such image-based modeling of vasculature,
including SimVascular [123, 53], CRIMSON [5] and VMTK [45]. This modeling paradigm
uses medical imaging, such as computed tomography (CT) or magnetic resonance (MR)
angiography, to construct a patient-specific anatomical model of vessels of interest. This
geometric model is subsequently converted into a 3D computational mesh to support de-
tailed blood flow and/or tissue mechanics simulation and analysis. The construction of an
anatomical model from medical image data remains largely a manual process [123]. This
process, noted as ‘data processing‘ in Figure 1.1, usually requires hours or days of manual
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Figure 1.1: Patient-specific computational modeling workflow. Inputs to the model may be
non-personalized data or personalized data which is derived from raw clinical measurements
(e.g. medical imaging) and requires data processing. The patient-specific model consists of
the patient-specific geometry, the governing equations of interest, boundary conditions and
initial conditions. Simulations for the computational model are solved for using numerical
solvers and their results are analyzed for personalized clinical predictions.

input from an expert, making it a heavy bottleneck in many research workflows.
Figure 1.2 shows a typical workflow for vascular model construction, starting with the

creation of centerlines along the vessels of interest, 2D segmentation of the vessel lumen
along the centerlines, and lofting of the 2D segmentations to generate a unified 3D model of
the vascular geometry. Alternative segmentation approaches exist, including region-growing
or level-set methods [53]; however, these methods generally struggle in the segmentation
of highly-branched structures such as blood vessels, particularly in the context of limited
image resolution, unclear boundaries and image artifacts [83]. Additionally, when the model
is constructed manually, substantial user bias may result. Ultimately, despite the popularity
and maturity of image-based cardiovascular modeling over the past 20 years, the process of
deriving a simulation-suitable anatomical model from medical image data has remained a
primary bottleneck for large-cohort studies or translational applications where timely results
are needed.

Recently, deep learning has been applied to automate and speed up medical image seg-
mentation[90, 42, 66, 104, 14, 77, 4, 102, 61]. Note that while medical image segmentation is
performed for a variety of healthcare applications, we focus here on the purpose of generat-
ing a simulation-suitable model that can be utilized to generate a computational domain for
physics-based simulation. Simulation suitable models have certain criteria that must be met
such as, being connected, sufficiently “smooth”, and able to be meshed (discretized) with
quality elements.

Deep learning, a subfield of machine learning, involves the use of deep neural networks
(DNNs) that learn to make predictions based on training data. During training, these
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Figure 1.2: A typical vascular model construction workflow involves (a) creating vessel paths
by manual selection of point (b) sequential segmentation of the vessel lumen boundary at
discrete cross-sections along the paths and (c) lofting these segmentation rings into a unified
model. This process is described in more detail in [123].

networks iteratively adjust their internal parameters to extract and utilize salient features
relevant to the prediction task. Once trained, the network can generalize to previously
unseen data. The widespread adoption of deep learning began in the early 2010s, driven
by the development of efficient training algorithms such as backpropagation and the use of
graphical processing units (GPUs), specialized hardware originally designed for rendering
computer graphics, which significantly accelerated training times. As of 2025, deep learning
underpins most state-of-the-art artificial intelligence applications, including those in medical
imaging.

Most deep learning methods for medical image vascular segmentation focus on pixel
classification[57, 112, 47, 38, 14, 77, 119, 55, 83]. The popular nnU-Net is a convolutional
neural network (CNNs) with a U -like model architecture and can be viewed as the current
state-of-the-art[42]. However, deep learning models trained for pixel classification often
predict segmentations that are disconnected or have substantial artifacts that complicate, or
prevent, generation of a mesh suitable to support numerical simulation. Pixel classification
task does not require topological knowledge for prediction, but instead leads to models trying
to maximize the number of pixels correctly classified. That task is inherently different from
the goal of constructing simulation-suitable vascular models.

Some progress has been made when deep learning has been applied to isolated anatomic
vascular regions [89, 13] including for cardiac models [50, 52]. In the work of Maher, et al. [67,
68] segmentation of branched vascular domains was achieved by assuming the existence of
vessel centerlines (cf. Fig. 1.2a). Under such assumptions, these centerlines are traversed and
local 2D cross-sectional segmentations of the lumen boundary are generated using a trained
network. This framework essentially automated step (b) shown in Fig. 1.2. However, for
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many vascular models, the generation of vessel centerlines is the most labor intensive step.
Moreover, with this approach, segmentation is only performed at discrete 2D slices along the
vessel, which provides incomplete sampling and can be problematic when the cross-section
is not connected or the centerline is not sufficiently aligned with the vessel. And more
importantly, discrete cross-sectional segmentation performs poorly at vessel bifurcations,
which are present in almost all applications.

The goal of this thesis is to develop methods for automatic vascular model construction for
simulation purposes with the aim of enabling clinical impact and research of patient-specific
vascular hemodynamic simulations.

Firstly, a novel automatic blood vessel segmentation and tracking method, SeqSeg (short
for Sequential Segmentation), is presented in Chapter 2. Afterwards, in Chapters 3, 4
and 5, this thesis presents extensions to this work, specifically for integrated cardiovascular
modeling, reduced order modeling of hemodynamics and vascular tracking. In Chapter
3, SeqSeg is combined with automatic cardiac modeling to introduce a novel integrated
framework for comprehensive cardiovascular modeling given the name MeshGrow. Then in
Chapter 4, the rapid automatic geometric modeling of vasculature using SeqSeg is combined
with lower computational cost of reduced order models of hemodynamics to obtain patient-
specific hemodynamic simulations on the order of minutes. Finally in Chapter 5, this thesis
presents novel approach inspired by human motion tracking methods in computer vision to
automatically track blood vessels in medical images. This approach is designed to overcome
a key limitation of SeqSeg’s segmentation-dependent strategy; its reduced ability to reliably
detect bifurcations in low-contrast or artifact-laden image data.

1.2 Prior Publication and Software Availability

Parts of this thesis have been published in journals and at conferences. All code was devel-
oped in Python and is open-source and available for use on GitHub1.

• Chapter 2; the code is fully available on GitHub2 and PyPi3, compiled for all major op-
erating systems: macOS, Windows, and Ubuntu. The work was previously published:
Numi Sveinsson Cepero and Shawn C Shadden. “SeqSeg: Learning Local Segments
for Automatic Vascular Model Construction”. Annals of Biomedical Engineering 53.1
(2025), pp. 158–179. doi: 10.1007/s10439-024-03611-z.

• Chapter 3 ; in addition to SeqSeg code, code is available on GitHub4. This work was
done in conjunction with the following publication: Numi Sveinsson Cepero, Arjun
Narayanan, and Shawn C. Shadden. “Integrated Framework for Unified Cardiac and
Vascular Mesh Construction from Medical Images”. Functional Imaging and Modeling

1https://github.com/numisveinsson
2https://github.com/numisveinsson/SeqSeg
3https://pypi.org/project/seqseg/
4https://github.com/ArjunNarayanan/LinFlo-Net
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of the Heart: 13th International Conference, FIMH 2025, Dallas, TX, USA, June 1–5,
2025, Proceedings, Part II. Lecture Notes in Computer Science. Vol. 1. Springer
Cham, 2025, pp. 98–109.

• Chapter 4; This work was done in collaboration with Boyang Gan. In addition to
SeqSeg code, code is available on GitHub5

• Chapter 5; This work was done in collaboration with Neerja Thakkar. Code is expected
to be released on Github6 once paper is published.

5https://github.com/BryannGan/MIROS
6https://github.com/numisveinsson
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Chapter 2

SeqSeg: Learning Local Segments for
Automatic Vascular Model
Construction

2.1 Abstract

Computational modeling of cardiovascular function has become a critical part of diagnos-
ing, treating and understanding cardiovascular disease. Most strategies involve constructing
anatomically accurate computer models of cardiovascular structures, which is a multistep,
time-consuming process. To improve the model generation process, we herein present SeqSeg
(sequential segmentation): a novel deep learning based automatic tracking and segmentation
algorithm for constructing image-based vascular models. SeqSeg leverages local U-Net-based
inference to sequentially segment vascular structures from medical image volumes. We tested
SeqSeg on CT and MR images of aortic and aortofemoral models and compared the pre-
dictions to those of benchmark 2D and 3D global nnU-Net models, which have previously
shown excellent accuracy for medical image segmentation. We demonstrate that SeqSeg is
able to segment more complete vasculature and is able to generalize to vascular structures
not annotated in the training data.

2.2 Introduction

Image-based vascular modeling is used for a variety of purposes including diagnosis, per-
sonalized treatment planning and fundamental understanding of disease progression [86, 79,
6, 109]. Specialized software has been developed for such modeling, including SimVascu-
lar [123, 53], CRIMSON [5] and VMTK [45]. This modeling paradigm uses medical imaging,
such as computed tomography (CT) or magnetic resonance (MR) angiography, to construct a
patient-specific anatomical model of vessels of interest. This geometric model is subsequently
converted into a 3D computational mesh to support detailed blood flow and/or tissue me-
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chanics simulation and analysis. The construction of an anatomical model from medical
image data remains largely a manual process [123]. Figure 2.1 shows a typical workflow for
vascular model construction, starting with the creation of centerlines along the vessels of
interest, 2D segmentation of the vessel lumen along the centerlines, and lofting of the 2D
segmentations to generate a unified 3D model of the vascular geometry. Alternative segmen-
tation approaches exist, including region-growing or level-set methods [53]; however, these
methods generally struggle in the segmentation of highly-branched structures such as blood
vessels, particularly in the context of limited image resolution, unclear boundaries and image
artifacts [83]. Additionally, when the model is constructed manually, substantial user bias
may result. Ultimately, despite the popularity and maturity of image-based cardiovascular
modeling over the past 20 years, the process of deriving a simulation-suitable anatomical
model from medical image data has remained a primary bottleneck for large-cohort studies
or translational applications where timely results are needed.

Figure 2.1: A typical vascular model construction workflow involves (a) creating vessel paths
by manual selection of point (b) sequential segmentation of the vessel lumen boundary at
discrete cross-sections along the paths and (c) lofting these segmentation rings into a unified
model. This process is described in more detail in [123].

Recently, machine learning has been applied to automate and speed up image segmenta-
tion. Note that while medical image segmentation is performed for a variety of healthcare
applications, we focus here on the purpose of generating a simulation-suitable model that
can be utilized to generate a computational domain for physics-based simulation. Simulation
suitable models have certain criteria that must be met such as, being connected, sufficiently
“smooth”, and able to be meshed (discretized) with quality elements. Most learning meth-
ods focus on pixel classification, which often results in segmentations that are disconnected
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or have substantial artifacts that complicate, or prevent, generation of a mesh suitable to
support numerical simulation.

Most progress has been made when machine learning has been applied to isolated anatomic
vascular regions [89, 13] including for cardiac models [50, 52]. In the work of Maher, et al. [67,
68] segmentation of branched vascular domains was achieved by assuming the existence of
vessel centerlines (cf. Fig. 2.1a). Under such assumptions, these centerlines are traversed and
local 2D cross-sectional segmentations of the lumen boundary are generated using a trained
network. This framework essentially automated step (b) shown in Fig. 2.1. However, for
many vascular models, the generation of vessel centerlines is the most labor intensive step.
Moreover, with this approach, segmentation is only performed at discrete 2D slices along the
vessel, which provides incomplete sampling and can be problematic when the cross-section
is not connected or the centerline is not sufficiently aligned with the vessel. And more im-
portantly, discrete cross-sectional segmentation performs poorly at vessel bifurcations, which
are present in almost all applications.

Herein, we present a novel method for segmenting branched vascular geometries from
medical image data utilizing local deep learning-based segmentation that does not require
a priori centerline information. This approach starts from a seed point and generates a
local 3D segmentation of the vessel(s) containing the seed point over a local subvolume.
Based on this local segmentation, we determine the orientation of the vessel and any locally
connected branches. We then step the subvolume along the determined vessel direction (and
new subvolumes along the identified local branch directions) to generate a 3D segmentation
of the neighboring segment(s). This approach is motivated by the following considerations:
when viewed locally by a subvolume that is centered on a vessel and slightly larger than
the vessel diameter, vessels of different sizes and from different regions exhibit substantial
geometric similarity (Figure 2.2), and consequently learning to locally segment a portion of a
vessel should be easier than learning to segment an entire vascular network. While cropping
of medical image volumes has been performed previously, for example, for coronary tracking
[127] [58], to the best of our knowledge such approach has not been used to generate 3D
segmentation or for segmentation of general vascular geometries.

By processing local subvolumes, we simplify the deep learning task and introduce bene-
ficial inductive bias to the machine learning model, allowing it to generalize to vasculature
not present in training data. We test this method on a dataset of publicly-accessible aortic
and aortofemoral models, and the results are compared to benchmark global 2D/3D nnU-
Net neural network models that have previously shown excellent results for medical image
segmentation. The main contribution of this work is a new method capable of:

• Tracking vasculature after initialization with a single point and vessel radius estimate.

• Segmenting vasculature while ensuring global connectivity to maintain physiologic
topology.

• Detecting bifurcations, storing them and tracking them sequentially.
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Figure 2.2: When viewed locally, vasculature of different sizes and anatomical regions ex-
hibit substantial geometric similarity. A) the pulmonary artery (r = 1.5mm), b) the bra-
chiocephalic artery (r = 9mm), c) the coronary artery (r = 1mm), d) the cerebral artery
(r = 2mm) and e) the femoral artery (r = 3mm) are presented

• Delivering a global surface mesh of segmented vasculature.

• Generalizing to segment parts of vasculature not annotated in training data.

2.3 Method

Algorithm

Figure 2.3 shows a schematic of the algorithm. Breifly, a “seed point”, (specifying a location
and direction) and a rough diameter “size estimate” of the vessel containing the seed point
are supplied by the user. A local subvolume surrounding the seed point is extracted from
the global image volume. The vessel portion contained in the subvolume is segmented using
a neural network. The segmentation is postprocessed and converted to a surface mesh, after
which a centerline is extracted. The resulting centerline is subsequently used to choose the
next subvolume location and size. These steps are explained in further detail below.

Segmentation

Dataset, Sampling and Augmentations

To train the U-Net and test the algorithm, we utilized a dataset of 41 CT and 44 contrast
enhanced MRI aortic and aortofemoral cases, which is commensurate with the amount of
data typically provided in segmentation challenges. The breakdown of how many cases
are used for training, validation and testing is specified in Table 2.1. The VMR datasets
used for training are accessible from the open access Vascular Model Repository at https:
//vascularmodel.com. For further testing on CT images, we also use a subset of the
AVT dataset [65], specifically the dataset obtained from Dongyang Hospital. Table 2.1

https://vascularmodel.com
https://vascularmodel.com
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Figure 2.3: Overview of the tracking and segmentation algorithm with inputs of the global
raw image and seed points for initialization. The algorithm takes steps, stores bifurcations
in the queue during tracking, and outputs a global segmentation map for post processing

Table 2.1: The datasets of patients used for model training and method testing. Abbrevia-
tion are as follows: Datasets; VMR: Vascular Model Repository, AVT-D: Aortic Vessel Tree
dataset, subset from Dongyang Hospital. Anatomy; AO:Aorta, AF:Aortofemoral. Disease;
H:Healthy, AAA:Abdominal Aortic Aneurysm, MA: Marfan Syndrome, CA:Coarctation
of Aorta, AOD:Aortoiliac Occlusive Disease, SVD:Single Ventricle Defect. Sex; M:Male,
F:Female, U:Unknown. Sex and age information was not available for the AVT dataset.

Dataset Modality Purpose Train/Test Anatomy Disease Sex Age(yr)

VMR CT Train/Test 33/8 25 AO, 23 H, 23M 6 - 80
16 AF 15 AAA, 6F ave: 58

3 MA 12U

VMR MR Train/Test 37/7 38 AO, 19 H, 14 CA, 30M 0.6 - 67
6 AF 5 SVD, 2 MA 14F ave: 17

4 AOD

AVT CT Test 0/18 18 AO 18 H - -
-D[65]

shows details on the datasets; modalities, purpose, training/test split, anatomies, diseases
(if present), sex ratio and age ranges. The datasets contain a 3D image volume and a
respective “ground truth” vascular segmentation map (converted from segmentation surface
models for the VMR data) and corresponding centerlines that served as ground truth labels
for training and testing.

To generate training data for the local segmentation U-Net, the global 3D medical image
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volumes in the VMR training datasets were sampled along the centerlines and these subvol-
umes (i.e. “Patches”) were stored. Namely, two volumes were extracted at each Patch: 1)
the original medical image data and 2) a binary segmentation of the subvolume based on
the model representing the ground truth label.

To improve the learning process, we varied the samples in terms of centering and size.
Briefly, some samples were centered along the centerline while others were shifted from
the centerline, and the subvolume sizes varied from just capturing the lumen of the vessel
to including more surrounding tissue. More specifically, each sample volume si is a cube
dependent on its side length and center, i.e., si(Li, ci) where Li is its side length and ci is
the center point of sample i. The side length and center are sampled as follows:

Li = Ri ∗ αi

ci = Ci + βi ∗Ri ∗wi

α ∼ N (µr, σ
2
r)

β ∼ N (µs, σ
2
s)

(2.1)

where Ri is the local radius of the vessel, Ci is the point on the centerline, w is a unit
vector perpendicular to the centerline and α, β represent the radius ratios used to enlarge
or shift the sample. w was chosen by sampling a random linear combination of orthogonal
unit vectors u,v that defined a plane perpendicular to the centerline:

wi =
ai ∗ u+ bi ∗ v
∥ai ∗ u+ bi ∗ v∥

, a, b ∼ U [−1, 1] (2.2)

where a, b are scalars sampled from a uniform distribution between [−1, 1]. We used (µr, σ
2
r) =

(5, 1) and (µs, σ
2
s) = (0, 0.8) so that the mean sample was 5 times the size of the radius and

centered on the centerline. This stochasticity was purposefully added to represent the vari-
ance that the tracking algorithm encounters during inference and is intended to increase the
robustness of the neural network. This process resulted in a training dataset D consisting
of N pairs of image subvolumes Xi and corresponding blood vessel segmentations Yt,i:

D = {(X1, Yt,1), (X2, Yt,2), ..., (XN , Yt,N)} (2.3)

In total, we get D = 36289 patches for CT data and D = 33603 patches for MR data. For
the VMR dataset 15 patient datasets were excluded for final testing, i.e., 8 CT and 7 MR
cases were not sampled for training or validation. The generation of subvolume data for
network training is shown schematically in Fig. 2.4.

Before training, MR image volumes were normalized via z-scoring, where each voxel value,
x, is subtracted from the image mean µ and then divided by the image standard deviation σ.
CT volumes were clipped and z scored according to foreground image values where µ and σ
are calculated only from voxels labeled as vessel in the ground truth training data and held
constant during inference [42]; see Table 2.2 for details. The preferred image spacing was
chosen as the median spacing across all cases and all image volumes were resampled using
a 3rd order spline. Segmentation maps were resampled differently, using linear splines on
one-hot encoded maps, and then the argmax of the result.
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Figure 2.4: Preprocessing involves extracting subvolumes along ground truth centerlines
and data augmentation prior to neural network training. Thousands of samples are acquired
from only a few dozen models. The neural network consists of an encoder E followed by a
decoder D, which outputs the predicted segmentation map used to compute loss, L, during
training

Neural Network Architecture and Training

The convolutional neural network (CNN) U-Net architecture was used for segmentation.
The U-Net is tailored to the processing of medical images, going from the original resolution
down to a low-resolution, high-dimensional space and then back up to the original resolution.
Herein, a 3D version of U-Net was chosen for the SeqSeg segmentation step. Note, we also
compare our end results to those of two benchmark U-Net models, i.e. a 2D U-Net and
a 3D U-Net, trained on the global image volumes, see Section 2.3 for further details. The
U-Net learns features primarily through two different mechanisms. First, by downsampling
the original image data the model is forced to retain only important global information when
squeezed through a lower-dimensional space. Second, by using skip connections across the
neural network the model is able to retain features related to finer details from the higher
resolution image in its final prediction. The skip connections are concatenations of blocks of
the same resolution. The final output is a pixelwise probability map indicating the likelihood
that a pixel corresponds to a target tissue.

Our U-Net was trained for binary classification: to predict whether voxel yi,j,k inside
segmentation mask Yp ∈ RW×H×D belongs to a blood vessel:

Yp = {yi,j,k ∈ [0, 1] | 0 ≤ i < W ; 0 ≤ j < H; 0 ≤ k < D}

yi,j,k =

{
1 if belongs to vessel
0 otherwise

(2.4)
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where i, j, k refers to the index of a voxel in an image of width W , height H and depth D. In
this section, lower case notation refers to individual nodes or voxels, e.g. y, whereas capital
notation, e.g. Y , refers to a set of nodes or voxels such as composing an image, segmentation
mask or output from neural network layers.

In mathematical terms, the neural network is a parameterized function fθ that transforms
a raw image input X ∈ RW×H×D into a blood vessel segmentation map:

Yp = f(X | θ) (2.5)

where θ are the parameters of the neural network, which are optimized using training data.
The final output, Yp, ranges between [0, 1] and can thus be interpreted as a probability map
of whether each voxel belongs to a blood vessel. This enables the volume to be binarized by
thresholding to a particular probability value.

We utilized the nnU-Net framework for hyperparameter specification and training [42].
The framework automatically determines parameters such as image resampling spacing,
patch size and batch size based on training data and GPU memory size. The underly-
ing neural network architecture used is the U-Net, with additional constraints on specific
parameters. Table 2.2 lists the specifications of our implemented U-Net model architectures
and training parameters. Since the SeqSeg model is trained on smaller volumes compared
to the benchmarks, its required batch size can be larger, see Table 2.2. The nnU-Net frame-
work utilizes stochastic gradient descent with Nesterov momentum with an initial learning
rate of 0.01 accompanied by a learning rate scheduler of (1 − epoch/epochmax)

0.9, where
epochmax = 1000 was chosen; see [42] for further details. Training was performed using an
NVIDIA Geforce RTX 2080ti GPU (11 GB GPU memory) on the Savio High Performance
Computing cluster at the University of California, Berkeley.

Loss Function

The loss function was a combination of Dice score (D ) and binary cross-entropy (CE):

D(Yp, Yt) =
2 · ∥Yp ∩ Yt∥
∥Yp∥+ ∥Yt∥

(2.6)

CE(Yp, Yt) =
1

n

∑
y∈Y

(yt · log yp + (1− yt) · log (1− yp)) (2.7)

where Yp and Yt are respective prediction and ground truth segmentation masks, respectively,
and n is the total number of voxels. Yt is defined similarly to Yp in Eq. (2.4). Binary cross
entropy is a common loss function for binary classification and we added Dice loss to regulate
it for medical image segmentation. Namely, the Dice score helps counter the class imbalance
that pixelwise classification problems face in medical image segmentation. This is critical
when working with 3D images where the number of voxels belonging to a blood vessel is a
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small percentage of the total voxels in the volume. It follows that our loss function is defined
as

L =

Nb∑
i

(1−D(Yp,i, Yt,i)− CE(Yp,i, Yt,i)) (2.8)

for a batch size Nb, where each batch is a subset of the total dataset Nb < N described in
Eq. (2.3). The data is batched to fit into GPU memory as described in Table 2.2. Each
image in the batch is processed in parallel on a GPU and the loss is accumulated before
taking a gradient step to update the model parameters.

Surface, Centerline Calculations and Step Taking

As mentioned above, the output of the U-Net is a binarized image subvolume. The marching
cubes algorithm [64] can be applied to this binarized image subvolume to generate a local
surface mesh of the vessel segment. The resulting surface was cut using the image subvolume
boundary planes, which results in truncation boundaries for the vessel(s), i.e., “inlets” or
“outlets”. One of these truncation boundaries is identified as the source (inlet) and others are
identified as targets (outlets). This process was performed automatically using information
from previous steps and from the direction of tracking. To do this, the centers of the
truncation boundaries are calculated. The truncation boundary center closest to the previous
stepping point is chosen as source and the rest as targets.

The surface mesh, with respective outlet labels, is used to automatically generate cen-
terline(s) and radius estimates of the local vessel segment using a levelset based centerline
extraction method. The method calculates centerline(s) as the path(s) that follow a wave
propagation starting from a seed point [35]. The wave propagation is modeled by equation:

|∇T (x)|F (x) = 1 (2.9)

where T (x), the time it takes for wave to reach point x, is solved using a set “speed” function
F (x). F (x) is set to have values proportional to distance from vessel boundary, leading to
higher value towards the center and lower closer to vessel walls. When Eq. 2.9 is solved
with T (x0) = 0 at source point x0, we obtain a solution with wave propagation faster in
the center of vessels. Then, using that solution, we perform gradient descent starting from
target point(s), where T (x) is high, until we reach the source point, where T (x) is low, and
have therefore defined a centerline path(s). Since the “speed” function had higher values
towards the center then so do the values of ∇T which forces the gradient descent towards
the center of the vessel while tracing back, see [35] for details. Furthermore, we estimate the
radius of the vessel at each point along the centerline by its distance to the surface.

The centerline extraction depends on well-defined outlet centers fed as seed points. Our
method defines these outlet centers automatically, as described above. In the case of a
bifurcation, a single outlet was labeled as the source based on the previous step and the
direction of tracking. The point(s) to move to along the computed centerline(s) is chosen at
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80% along each branch, see stepping point choice in Fig. 2.5. We found that this allowed for
smaller step size, ensuring more accurate bifurcation detection.

Choice of Subvolume Size and Chances

The local centerlines calculated as described above contain 1D (lines) meshes in 3D space
connecting all outlets with radius information along them, see Figure 2.5. This radius es-
timate is subsequently used to determine the size of the next subvolume to extract. The
length of the next subvolume is chosen as five times the radius estimated, consistent with
the size of the training samples as described in Section 2.3. Furthermore, to prevent under-
estimation of subvolume size, we let radius estimate carry on from one step to the next. The
subvolume sidelength L is calculatated by an average of the current radius estimate, ri, and
the estimate from the previous step, ri−1:

L = 5 ∗ (ri + ri−1)/2 (2.10)

Additionally, we use the segmentation prediction itself as an indicator of subvolume size to
vessel size ratio. If a high percentage of voxels within an image subvolume is predicted as
belonging to vessel, that may indicate a small subvolume to vessel ratio, i.e., that the vessel
occupies a large part of the volume. Utilizing this, we defined a cutoff percentage, γ∗, for
which if the percentage exceeds it then we enlarge the subvolume size until it drops below,
see Algorithm 1, where X is the subvolume, a function of sidelength L.

Algorithm 1 An algorithm to enlarge the subvolume based on the percentage of voxels
predicted as vessel, γ.

R← (ri + ri−1)/2
L0 ← 5 ∗R
Yp ← f(X(L0))
γ ← 1

W∗H∗D
∑

y∈Yp
y

while γ ≥ γ∗ do
L← 5 ∗R ∗ 1.1 ▷ Increase sidelength by 10%
Yp ← f(X(L))
γ ← 1

W∗H∗D
∑

y∈Yp
y

if L
L0

> 1.3 then
break ▷ Maximum increase of 30%

end if
end while

When SeqSeg encounters local subvolumes with image artifacts or unclear vessel bound-
aries, the neural network model sometimes produces inaccurate segmentations. However, in
many cases, these inaccuracies are bound to those specific locations in the image volume
whereas the following downstream vasculature may be clearer and easier to segment. To
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handle these situations, we implemented a “chances” feature to SeqSeg. When SeqSeg fails
to detect ≥ 2 outlets or fails to successfully compute a centerline, we give the step another
chance and move further in the same direction and try again. Given a point pi with a
corresponding vessel tangent ti and radius Ri, the next “chance” location pi+1 is calculated
as:

pi+1 = pi +R ∗ ti (2.11)

We set a maximum number of chances to three. This allows SeqSeg to better move past
difficult regions of the image.

Bifurcations and Retracking Prevention

Bifurcations are detected by counting the branches of the centerline successfully computed.
When bifurcations are detected, they are stored and returned to once other branches have
been tracked. Namely, the largest radius outlet was chosen for continued tracking while
the others were saved as bifurcation points and were revisited once the current vessel had
been fully tracked. These bifurcation points were periodically sorted by radius to ensure
prioritization of the largest vessels first, similar to how a human would interrogate the
vasculature; see Figure 2.6.

Since the method detects outlets locally, it can sometimes detect the same bifurcations
multiple times. This occurs especially if a small step size is used to advance the subvolume.
To save computational time, we implemented a retracking prevention technique that peri-
odically checks the global segmentation to determine whether the algorithm has segmented
the current region before. We added buffers to the global assembly module to ensure that
these checks only applied to segmentations involving past branches and not the current one.

Initialization

As mentioned above, the SegSeg method requires a seed point accompanied by a size estimate
and direction for initialization. For evaluation purposes, this seed point is chosen at the ‘start’
of each vascular model, in the largest artery closest to the heart, similar to how a user would
define it.

Stop Criteria

Since SeqSeg is an automated tracking method, stop criteria are required to terminate step-
taking. The current framework has no explicit stop criteria; however, indirectly, it stops
when either of two scenarios occur:

1. The method reaches the global image boundary, thereby requesting image data that
does not exist.
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Figure 2.5: Automatic tracking using local surface mesh predictions for 3 steps, involving 12
calculation time steps. Centerlines are extracted and the next points are chosen to move to.
These steps are subsequently assembled together to form the global vasculature model

2. The requested subvolume is of low resolution (e.g., resulting from tracking a small
vessel) or is of too low quality (e.g., blurry or has image artifacts) that results in
segmentation failure, or a centerline extraction failure from the resulting low-quality
segmentation.
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Figure 2.6: How the algorithm takes steps and handles bifurcations, starting from an initial
seed point. The bifurcation points are stored in queue for subsequent tracking

In addition to the “forced” stop criteria mentioned above, we have implemented optional
criteria as well, that can be toggled if premature stopping is desired. The optional stop
criteria are as follows:

1. Define Nmax, maximum number of steps taken and stop once number of steps taken
has exceeded Nmax. We set Nmax = 500.

2. Define Rmin, minimum allowed radius, and stop tracking down a branch once radius
estimate is under Rmin. We set Rmin = 0.5mm.

3. Define NBmax, maximum number of branches to be tracked, and stop once number of
branches exceed NBmax. NBmax can, for example, be set as 15.

Global Assembly

Sampling subvolumes may overlap a given voxel multiple times depending on the step size
used to propagate the subvolume along the identified vessel (cf. superposition of subvolumes
on the right side of Figure 2.5), or because of a new subvolume introduced to track a bi-
furcation. The end result is that several predictions may exist for a given voxel. Thus, all
local segmentations are gathered globally by calculating a weighted mean prediction for each
voxel. During development, we noticed that segmentations tend to be less accurate close
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to the subvolume boundary, so we added Gaussian weighting giving more weight to voxel
predictions closer to subvolume centers. This is also consistent with the benchmark nnU-Net
method [42]. For each subvolume prediction of sidelength L and center point c, we define a
weight map W , where each voxel with indices i, j, k and point location pi,j,k gets a weight
wi,j,k according to:

wi,j,k = e−
∥pi,j,k−c∥2

2σ2 , σ =
1

4
L (2.12)

Therefore, voxels close to c get a weight close to 1 while voxels close to the borders of the
subvolume get a weight value of approximately two standard deviations from the mean, 0.02.

Given a set S, of size NS , of segmentations in which local volumes included voxel yi,j,k,
the final global segmentation value was given by

yi,j,k =
1

NS
∑

s∈S w
s
i,j,k

∑
s∈S

ws
i,j,k · si,j,k (2.13)

where i, j, k refer to global voxel indices and ws
i,j,k is the weight value for that voxel associ-

ated with segmentation s. This was performed prior to thresholding so that the resulting
global segmentation retained voxel values ranging between [0, 1] depending on the confidence.
Finally, the segmentation was upsampled, and thresholded using a value of t = 0.5:

yi,j,k =

{
1 if yi,j,k ≥ t
0 if yi,j,k < t

(2.14)

where the largest connected body is retained, converted to a surface mesh using marching
cubes and smoothed to remove voxel artifacts. For mesh smoothing, we use a windowed sinc
function interpolation kernel to move mesh vertices[115]. More specifically, we perform ten
iterations with a passband value of 0.01.

Experiments, Metrics and Statistical Analysis

We compared our results to those of two benchmark nnU-Net models, i.e. a 2D nnU-Net
and a 3D nnU-Net, trained on the global image volumes. The 3D nnU-Net performs 3D
convolutions whereas the 2D version performs 2D convolutions, and outputs 2D predictions,
solely on the image z-plane, the patient’s axial plane. A 3D segmentation map output from
the 2D nnU-Net is assembled by a z-stack of 2D segmentations. The nnU-Net is arguably
the most state-of-the-art method for medical image segmentation and thus is chosen as a
benchmark for comparison.

The metrics for comparing SeqSeg with the global nnU-Net benchmarks were as follows:

D(X, Y ) ==
2 · ∥X ∩ Y ∥
∥X∥+ ∥Y ∥

(2.15)

H(X, Y ) = max{d(X, Y ), d(Y,X)},
where d(X, Y ) = supx∈X infy∈Y d(x, y)

(2.16)
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CO(Y,Ct) =

∫
Ct
Y dx∫

Ct
dx

(2.17)

where D is the Dice score, H is the Hausdorff distance, and CO is the centerline overlap
with Ct being the ground truth centerline and X,Y being segmentation maps. Here X
represents the ground truth segmentation map and Y the predicted segmentation maps,
either output from SeqSeg or the benchmark nnU-Net models. The Dice score measures the
overlap between two segmentations and ranges between [0, 1]. The Dice score is common for
medical image segmentation because of its ability to penalize imbalanced datasets accurately.
The Hausdorff distance measures the maximum distance between two surfaces and has a
minimum of 0 for identical surfaces. The centerline overlap is a score ranging between
[0, 1] and represents the percentage of the ground truth centerline captured in the predicted
segmentation. Both the H and CO metrics give additional insight into a method’s ability
to capture bifurcations and specifically small blood vessels compared to the Dice score. The
Dice score compares segmentations on a volumetric basis by comparing voxels, but since
most voxels belong to larger blood vessels, it results in indirect bias.

Not all blood vessels were annotated in the test datasets, or they were present but
truncated. We thus masked the outputs from all methods with the volume surrounding the
ground truth annotated vessels. We define this mask volume by labelling all pixels within a
six radius distance from the ground truth centerline.

For statistical analysis, we perform the Wilcoxon signed-rank test between the resulting
metrics scores of SeqSeg and the benchmark. This is a non-parametric test similar to the
paired t-test. But since the paired t-test has limitations when comparing machine learning
model performances, we opted for the Wilcoxon test [99]. Specifically, we test the null
hypothesis that the median of differences between the two sets of sample results (metric
scores) is zero. A p-value less than 0.05 was considered to reject the null hypothesis, and
therefore indicate a statistically significant difference between the two sets. We both perform
Wilcoxon tests between SeqSeg and 2D nnU-Net predictions and between SeqSeg and 3D
nnU-Net predictions.

2.4 Results

We tested SeqSeg on 15 held-out VMR image volumes (test set), 8 of which were CT vol-
umes and 7 of which were MR volumes, as well as additional 18 AVT CT image volumes.
Namely, SeqSeg and the 2D and 3D nnU-Net benchmark methods were used to segment the
vasculature from these image volumes, and those resulting segmentations were compared
to manually-generated “ground-truth” segmentations from the open data Vascular Model
Repository and the AVT dataset[65].

A quantitative evaluation of the Dice score (D), Hausdorff distance (H) and centerline
overlap (CO) for segmentations generated from the VMR test set using SeqSeg and the
nnU-Net benchmark methods is presented in Table 2.3. SeqSeg, on average, obtained higher
Dice scores than the nnU-Net benchmarks in 11 test cases, lower Hausdorff distance scores
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in 11 cases, and higher centerline overlap scores in 12 cases, all out of a total of 15 test
cases. Specifically, SeqSeg on average obtained higher scores than the 2D and 3D nnU-Net
benchmarks in terms of Dice score by 0.017 and 0.029, respectively for CT, and 0.036 and
0.029, respectively for MR. For the Hausdorff distance, SeqSeg on average obtained lower
distance than the 2D and 3D nnU-Net benchmarks by 0.59 and 0.966 pixels, respectively
for CT, and 0.565 and 0.872, respectively for MR data. For centerline overlap, SeqSeg
obtained higher scores on average than the 2D and 3D nnU-Net benchmarks by capturing
3% and 10.9% more vessel segments, respectively for CT, and 9.4% and 10.4% more segments,
respectively for MR. Improvements to metric averages that were statistically significant (p <
0.05) are indicated by an asterisk ∗ in Table 2.3. Beyond mean improvements, SeqSeg
appeared far more robust. This can be observed from the the box plots in Figure 2.9, which
demonstrates greater consistency in the performance of SeqSeg for all quantitative metrics.

Since the objective of segmentation is a unified, high-quality geometric model, distilling
the comparison down to any single metric is overly simplistic (if not deceptive). For broader
perspective, Figure 2.7 provides a qualitative comparison, showing the CT and MR segmen-
tations for which the 2D nnU-Net benchmark yielded the best, median and worst Dice scores,
and includes comparison of these to the segmentations generated from SeqSeg. (Note, since
the 2D nnU-Net was superior to the 3D nnU-Net, the 2D nnU-Net was considered the de
facto benchmark.) This figure demonstrates that SeqSeg generally captures more of the vas-
culature, and particularly the connections to smaller branch arteries. The Appendix provides
a visual comparison of the segmentations generated by SeqSeg and the nnU-Net benchmarks
for all CT, and MR, VMR test cases in Figures 2.10, and 2.11, respectively.

For the AVT CT test set, the quantitative metric scores can be seen in Table 2.5 between
SeqSeg and the 2D nnU-Net benchmark. On average, SeqSeg obtained higher Dice scores
by 0.065 and centerline overlap by 10.8%. On average, the benchmark Hausdorff distance
scores were lower by 0.401 pixels. In terms of statistical significance, both Dice and centerline
overlap differences were found statistically significant whereas the difference in Hausdorff
distance was not. Boxplots of the metric scores are shown in Figure 2.8, again showing a
smaller spread (better robustness) for SeqSeg compared to the benchmark, particularly for
Dice score and centerline overlap. For qualitative comparison, all resulting meshes are shown
in Figure 2.12. As observed, SeqSeg captures more, and smaller, branches as compared to
the benchmark, even branches not included in the ground truth (cf. cases 2, 4, 5, 6, 8, 9, 11,
15, 16, 17 and 18).

Inference time also differed between SeqSeg and the benchmarks. If both are run on the
same CPU, measured SeqSeg inference time ranged 20-80min, depending on the number of
branches, whereas the nnU-Net benchmarks ranged 2-3hr.

Comparison with nnU-Net’s largest connected region

The ultimate goal in image-based modeling is to use a segmentation as the computational
domain for numerical simulation. Simulations require domains to be unified and well defined.
Since the nnU-Net segmentations are often disjoint, filtering and keeping only the largest
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connected body would be necessary to use the segmentation for simulation purposes. Thus,
for a more practical comparison, in this subsection we compare SeqSeg segmentations with
nnU-Net segmentations that have been filtered to retain the largest connected region.

We present the quantitative metric values for the largest connected region results in
Table 2.4. From this table we can observe that SeqSeg on average obtained higher metric
scores than the 2D/3D nnU-Net benchmark, respectively, as follows: the Dice coefficient
improved by 0.062/0.032 for CT and 0.064/0.029 for MR; the Hausdorff distance improved
by 1.812/2.002 for CT and 2.153/0.839 pixels for MR; and the global centerline overlap
increased by 10.2/16.8% for CT and 18.7/13.8% for MR. Improvements to metric averages
that were statistically significant (p < 0.05) are indicated by an asterisk ∗ in Table 2.4.
Differences in centerline overlap scores were found statistically significant between SeqSeg
and both benchmark methods. The box plots of these metrics for all cases are shown in
Figure 2.9 and again reveal far less spread in the metrics for SeqSeg compared to both
benchmark models, indicating greater robustness in segmentation results for SeqSeg.

Figure 2.7 displays segmentation results for the best, median and worst case results for
the 2D nnU-Net benchmark largest connected region, and compares to the segmentation
predicted by SeqSeg. (Again, we excluded the 3D nnU-Net in this comparison as it generally
performed worse than its 2D counterpart.) For all cases shown, SeqSeg generally captures a
greater number of branches and greater extent of the vessels, even when compared to nnU-
Net’s best results. This is further demonstrated in Figures 2.10 and 2.11 in the Appendix
for all test cases.

For the AVT CT test data, Table 2.5 and Figure 2.12 show results for the benchmarks
after largest connected component filtering, quantitatively and qualitatively respectfully. We
obtain statistically significant difference between SeqSeg and the benchmark for all metrics;
Dice, Hausdorff distance and centerline overlap. As shown in Fig. 2.12, SeqSeg produces
better unified vascular trees in more instances than the benchmark.

2.5 Discussion

U-Net learning models, and particularly the more recent nnU-Net, have shown excellent
potential for automating image segmentation tasks. However, segmentation of branched
vascular structures from medical image data is fraught with challenges since vessels typically
compose relatively few pixels, vascular geometry varies considerably between patient and lo-
cation, and maintaining connectivity of highly branched structures by pixel classification is
tricky. We herein propose a sequential segmentation technique (SeqSeg) that leverages U-Net
learning to locally build vascular models. We observed that SeqSeg generally outperformed
current state-of-the-art global nnU-Net models when tested on typical vascular images used
for image-based modeling, particularly when comparing overall extent of connected vascu-
lature predicted. Namely, SeqSeg was superior in extending the segmentations into smaller
branch arteries or distal segments when compared to the global nnU-Net benchmarks (or, in
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Figure 2.7: Qualitative comparison of the resulting meshes on the VRM test dataset, com-
paring the best, median and worst cases of the nnU-Net benchmark to those of SeqSeg. From
Table 2.3 these are cases 7, 4 and 5 for CT and 4, 5, and 1 for MR data, respectively

fact, “ground truth” segmentations). In addition, SeqSeg performance was generally more
robust, as indicated by less variance in the quantitative results.

We note that when comparing the difference in the quantitative metrics across the VMR
test cases, the superiority of SeqSeg did not necessarily reach statistical significance as mea-
sured by p < 0.05. This is perhaps due to the smaller number of test cases we had access to.
In addition, the VMR ground truth used for evaluating these metrics were not as extensive
as they could have been, which likely handicapped the comparison since SeqSeg generally
excelled at extending the segmentations further down the vascular tree compared to the
nnU-Net benchmarks. Namely, the ground truth data tended to be limited to the aorta and
proximal segments of branch arteries, which are generally easier to segment, and both SeqSeq
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(a) (b)

(c)

Figure 2.8: Quantitative metric scores for the AVT test dataset for SeqSeg and the 2D
nnU-Net benchmark, both raw and after largest connected component filtering. (a) Dice (b)
Hausdorff distance (in pixels) (c) Centerline Overlap. See Sec. 2.3 for definition of p-values.

and the nnU-Net benchmarks performed on average equally well in such “less-challenging”
regions. Moreover, metrics like Dice are inherently biased to larger vessels. While the ground
truth segmentations could have been manually altered to extend vessels, or include missing
branches, this can introduce potential bias; thus, we chose not to adulterate the ground
truth from the public repository. Lastly, we note that most prior publications in this field
[90, 14, 24, 77, 15, 37] do not report whether their improvements to prior benchmarks were
statistically significant.

The application of SegSeg to the AVT CT test dataset offered an interesting application.
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Whereas SegSeg and the benchmarks were trained on VRM data, with a subset of the VMR
data held out for testing, the AVT data was a completely de novo data source unrelated to
the training. For the application to this de novo data, SegSeg more convincing outperformed
the nnU-Net benchmarks, achieving statistically significant higher accuracy in terms of all
quantitative metrics. Moreover, the qualitative comparisons shown in Fig. 2.12 demonstrate
that SegSeq was able to segment far more aortic branch arteries, and extend arteries further
distally than the benchmark, or, in fact, even than the ground truth. It is unknown if this
superior performance extends to similar de novo MR data since such data was not available.

The advantage of SeqSeg is that it focuses the segmentation task locally around a vascular
segment. Indeed, the same neural network architecture and training strategies were used for
SeqSeg and the benchmarks. The centerline overlap metric, which give increased weight
to smaller branches and bifurcations, showed generally better performance for SeqSeg. In
fact, after largest connected region filtering, the difference in centerline overlap metric was
statistically significant for all test datasets. This is likely because the nnU-Net benchmarks
may sacrifice smaller branches in order to accurately predict larger branches that carry more
pixels. In contrast, SeqSeg deals with all branches, if detected, more equitably, by focusing
on one segment at a time. Figures 2.10, 2.11, and 2.12 show another major advantage
of assembling a vascular network piece-wise: ensuring connectivity of the resulting model,
which is crucial for blood flow and tissue mechanics simulation purposes.

Since the overall objective is to produce models capable of physics based simulation, it
is notable to mention SeqSegs superiority towards that goal. Firstly, as mentioned above,
SeqSeg surpasses the benchmark’s’ ability to generate expansive and single connected body
models. Secondly, since SeqSeg tracks the vasculature, it maintains information on branches
and their connections relative to the global vascular organization. This can be used to place
boundary conditions (inlet and outlet conditions), necessary for physics-based simulation
setup. This information is not available for typical CNN segmentation methods since all
pixels are treated equally and vasculature organization is ignored. The authors note that
this study does not directly look at the effects of these methods on actual physics-based
simulation results, which is beyond the scope of the current study.

One might assume an advantage of SegSeq is that because it uses local patches of the
image volume, the number of inputs for training is higher than for the global nnUnets.
However, during training nnUnet partitions the image volume into patches and uses extensive
augmentations, which greatly increases the “samples” for training.

The results from the benchmark 2D and 3D nnU-Nets show the limitations of 3D convolu-
tional neural networks for global vasculature segmentation–the problems of class-imbalance
and image size. Because global image volumes surpass GPU memory, methods are forced to
either downsample or split the image into patches to fit on a GPU. Our method excels within
the constraints of GPU memory because it processes smaller subvolumes at each time, which
rarely exceeds the GPU memory limit, see Table 2.2 for larger possible batch sizes for ex-
ample. Furthermore, in a global image volume, the vascular pixels represent only a fraction
of the total pixels, making training difficult. Our method focuses on the pixels around the
vasculature, which, by definition, alleviates class imbalance.
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On the other hand, the results also indicate that the source of better segmentation is not
simply locality. The benchmark models were trained on small patches that do not undergo
downsampling. By training locally and incorporating prior learned information, i.e. the
location and size of the vessel, SeqSeg is generally able to segment with greater detail and
accuracy, particularly in smaller vessels.

Another limitation that impacts global segmentation learning is that ground truth seg-
mentation, being human-generated, in most cases did not contain segmentation of all branches
or portions. This implies that some training data had certain arteries, e.g., the renal arteries,
segmented while others did not, which can result in poor segmentation of test data. Since
SeqSeg can utilize training patches around vessels, the training mostly encounters positive
examples of arteries, e.g. the renal arteries only if they are present, and will not encounter
negative (wrong) examples from less segmented images, e.g. where the renal arteries were
not segmented. Thus, SeqSeg can be more efficient with training data, which is beneficial
since annotated data collection is costly and time-consuming. This could also help explain
the ability of SeqSeg to segment a greater number of smaller branches, even those not present
in all training examples.

Additionally, SeqSeg may have been able to generalize to regions not present in the
training data because vessels share similar image features when viewed locally. For example,
Figures 2.10 and 2.11 show how SeqSeg managed to track and segment small bifurcations
not included in the ground truth as well as elongate already segmented vessels. Inspection
confirmed that these vessels were present in the image data. In fact, the authors further
confirmed this qualitatively by training a model solely on one branch per case (the aorta),
and SeqSeg was able to generalize to other branches on test data. Furthermore, SeqSeg
manages to detect and handle bifurcations, which has been an challenge for blood vessel
tracking and tracing methods [46, 127, 1, 97, 57]. Unlike other works, SeqSeg does not
depend on explicit bifurcation detection, but instead handles them implicitly through surface
representations expressing them. This makes handling complex junctions with multiple
branches more tractable.

For further comparison to previous works, SegSeg achieved better global Dice scores than
Maher et al. who trained neural networks for 2D lumen segmentation on similar datasets
[68]. Furthermore, the method of Maher et al. depended on previously user-generated cen-
terlines, whereas our method automatically generates the centerlines while simultaneously
segmenting the vasculature. This is significant since centerline generation is often the most
time-consuming step of image-based model construction.

SegSeg used a 3D U-Net neural network architecture for local segmentation predictions,
however, other architectures, such as vision transformers [37], transfer learning models such
as 3D MedNet [15] or V-Net [77], with residual connections, could possibly be used to perform
this task. Similarly, future developments could include learning methods to determine step
size or other parameters that are derived from deterministic procedures in our presented
model. For example, deep learning can be applied to directly predict subsequent points [23],
local centerline segments or surfaces using template-based approaches similar to what has
been done for cardiac model construction [52]. Additionally, the SeqSeg method can be
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trained and tested for generalization to other vascular anatomies such as coronary arteries,
pulmonary arteries and cerebrovascular models. Since the training and testing occur locally,
new data from different anatomies can be readily incorporated into the existing framework.

Limitations of the presented method include the dependence on voxel-based segmenta-
tion, the dependence on capturing bifurcation roots, and the possible computational cost.
Voxel-based segmentation inevitably leads to staircase artifacts on the final surface, as shown
in Figures 2.10 and 2.11. Since our stepwise approach relies on accurately capturing bifurca-
tion roots, there is the possibility of missing whole branches if the root is difficult to segment,
e.g. because of image artifacts. The method also requires neural network inference at each
step, which has the potential to scale poorly for extensive vascular networks.

2.6 Conclusion

Despite its growing importance, reconstructing vascular models from medical image data in
an accurate and rapid manner remains an open area of research. In this work we present
SeqSeg; a novel image-based vascular model construction method based on building the vas-
cular network in a stepwise manner to facilitate learning. SeqSeg is capable of automatically
tracking and assembling a global segmentation and surface, depending only on a single seed
point. We tested the method on CT and MR images of aortic and aortofemoral models and
compared to state-of-the-art benchmark 2D and 3D U-Net segmentation methods, SegSeg
had similar or better accuracy in terms of Dice score, Hausdorff distance, and centerline
overlap, but more notably was more robust and able to connect a greater extent of the vas-
culature. Our future work includes training and testing using other vascular anatomies as
well as further optimizing local segmentation and bifurcation detection.

2.7 Appendix
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(a) (b)

(c) (d)

(e) (f)

Figure 2.9: Quantitative metrics for VMR test data; (a) CT Dice (b) MR Dice (c) CT
Hausdorff (in pixels) (d) MR Hausdorff (in pixels) (e) CT Centerline Overlap (f) MR Cen-
terline Overlap. See Sec. 2.3 for definition of p-values.
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Figure 2.10: Resulting meshes from complete VMR CT test dataset. Each row represents
a different vascular model, labeled consistently with Tables 2.3, 2.4
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Figure 2.11: Resulting meshes from complete VMR MR test dataset. Each row represents
a different vascular model, labeled consistently with Tables 2.3, 2.4
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Figure 2.12: Resulting meshes from complete AVT CT test dataset. Each row represents a
different vascular model, labeled consistently with Table 2.5
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Chapter 3

MeshGrow: Integrated Framework for
Unified Cardiac and Vascular Mesh
Construction from Medical Images

3.1 Abstract

Patient-specific cardiovascular simulations have become an integral part of cardiovascular
research. Cardiovascular simulations provide detailed information difficult or impossible to
attain clinically. A primary factor hindering large patient cohort studies and clincal impact of
cardiovascular simulations is their dependence on accurate patient-specific three dimensional
geometric models which remain time-consuming and costly to costruct from medical image
data. Methods have been proposed to automate the model construction process, for either
vascular or cardiac purposes. We propose a novel method, MeshGrow, that, automatically,
reconstructs both the cardiac chambers as well as the aorta and its main sub-branches,
and returns a simulation ready mesh with defined aortic valve connecting the two. We
deploy two different methods of model constuction for the cardiac chambers and vascular
regions independently to address the specific challanges involved with each. For the cardiac
segmentation, we utilize a template deformation based method whereas for the vasculature
we implement a step-wise “growth“ based approach. We present test results of our method
on MR and CT image data.

3.2 Introduction

Patient-specific computational modeling of cardiovascular function is a cornerstone of car-
diovascular research and, increasingly, through clinical translation, a part of patient care
[32, 25, 22, 107, 73]. Specifically, patient-specific simulations of tissue mechanics and fluid
dynamics provide insights into physiological functions that are otherwise difficult or impos-
sible to observe, such as tissue deformation, cardiac electrodynamics, and vessel wall shear
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stress. These simulations require anatomically accurate geometric models representing the
domain within which they operate. Typically, these models are constructed from medical
image scans, where tissue boundaries are delineated using pixel or voxel data as a reference.

A primary challenge limiting the integration of patient-specific computational simula-
tions into clinical practice is the time-consuming and costly process of geometric model
construction. This bottleneck hampers large-scale patient cohort studies and prevents real-
time inference, both of which are critical in clinical settings [32]. Additionally, most existing
methods rely on expert-driven manual input, resulting in a lack of standardization where
the final model can vary depending on the modeler [93, 84].

Several software tools have been developed for patient-specific cardiovascular model-
ing. Most, such as SimVascular and CRIMSON [123, 5], focus on vascular modeling. The
standard workflow involves manually generating pathlines along vessel centers, followed by
defining vessel lumen contours in planes perpendicular to these pathlines. These 2D con-
tours are then lofted to construct a 3D surface mesh of the vasculature. However, this
process heavily depends on manual input, requiring expert users to construct pathlines and
refine 2D segmentations. Even with advancements in 2D segmentation techniques, such as
level-set methods and machine learning [134, 68, 67], manual correction remains necessary.
Additionally, selecting segmentation points along pathlines can lead to contour misalign-
ment, complicating the 3D lofting process. Therefore, there is a clear need for accessible,
automated vascular model construction methods.

Cardiac modeling software has not been developed to the same extent as vascular mod-
eling tools. Most modelers rely on general medical image segmentation software such as 3D
Slicer [28]. Cardiac segmentation presents unique challenges due to the unclear boundaries
between heart chambers in medical images. Moreover, temporal modeling introduces addi-
tional complexity, requiring multiple consistent cardiac models across different time points in
a sequence. Current methods primarily use basic segmentation techniques, including man-
ual pixel labeling and thresholding [63]. While semi-automated approaches, such as level-set
methods and region growing, offer potential improvements, they still require manual correc-
tion and parameter tuning [63, 96, 33]. Thus, a comprehensive automated cardiac modeling
method remains an unmet need.

Machine learning-based segmentation methods have recently gained attention as a promis-
ing approach for automating model construction. Deep neural networks (DNNs) have demon-
strated strong performance in medical image segmentation, particularly for pixel-wise classi-
fication tasks using architectures such as U-Net [102]. Convolutional neural networks (CNN)
have been employed for cardiac segmentation, achieving high pixel classification accuracy.
However, they often produce staircase artifacts and disconnected regions, both of which are
undesirable for simulation purposes [50, 52, 133]. Alternative approaches, such as graph neu-
ral networks, have been used to deform mesh templates, improving topological consistency
[51]. However, this method introduces overlapping elements, which LinFlo-Net addresses by
enforcing continuous and smooth deformations [87].

For vascular segmentation, deep neural networks have been trained to classify pixels
corresponding to coronary arteries, the aorta, and other structures [83, 31, 84, 121]. While
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these methods achieve high accuracy for large vessels with well-defined boundaries, they
struggle with smaller branches, often resulting in disconnected structures. This limitation
poses a significant challenge for simulation applications, where a unified mesh is required.
SeqSeg attempts to address this issue by enhancing local vessel segmentation and prioritizing
smaller branches [113]. However, pixel-based classification methods still introduce staircase
artifacts, necessitating post-processing to generate physiologically accurate surface meshes.
Beyond pixel classification, CNN models have also been applied to vascular tracking [127]
and bifurcation detection [57, 97], but these approaches require integration with 2D or 3D
lumen predictions to create complete vascular models.

To our knowledge, cardiac and vascular model construction methods have been devel-
oped largely independently. This is likely due to the historical separation of cardiac and
vascular simulation applications. However, the physiology and pathology of the heart and
its primary branches are closely interconnected. Future cardiovascular modeling efforts must
integrate both cardiac and vascular components to produce comprehensive 3D models with
well-defined boundaries.

In this paper, we introduce MeshGrow, a novel method capable of jointly modeling cardiac
and vascular structures. Given the distinct topological differences between these anatomical
regions, we employ two specialized modeling approaches. For the cardiac chambers, we
deform a template mesh to fit the patient-specific anatomy. For the vasculature, we use a
seed-based growth approach, expanding outward from the vessel root. Figure 3.1 illustrates
the rationale for this two-step approach, highlighting inter-patient anatomical variability and
the necessity for distinct modeling strategies.

MeshGrow offers the following key features:

• Automated cardiac localization and modeling: Identifies the cardiac region in medical
images and generates patient-specific cardiac models.

• Automated vascular initialization: Locates the aortic root from the predicted cardiac
model and initializes vascular tracking and segmentation.

• Extensive aortic tree segmentation: Constructs a detailed segmentation of the aortic
tree.

• Patient-specific cardiovascular meshing: Produces a unified cardiovascular mesh with
defined inlets, outlets, and an aortic valve for boundary condition placement.

By integrating these capabilities, MeshGrow represents a significant step toward fully
automated cardiovascular model construction, facilitating both large-scale studies and real-
time clinical applications.
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Figure 3.1: The motivation for different modeling approaches for vasculature as opposed to
cardiac chambers. Vasculature models vary more extensively across patients and anatomies,
both in number of bifurcations and bifurcation locations, whereas cardiac models exhibit
stronger topological similarities.

3.3 Methods

In this section, we outline each individual step in the MeshGrow pipeline for comprehensive
cardiovascular geometric modeling. We start by explaining an overview of the method’s
workflow and then describe each step in further detail. Starting with cardiac localization
in the global image volume and subsequently how we perform cardiac segmentation using a
template based approach called LinFlowNet[87]. Then we describe how we use the cardiac
geometric model to initialize the vascular segmentation method SeqSeg along with an expla-
nation of the main components of SeqSeg[113]. Finally, we outline how we unify the cardiac
and vascular geometric models into one, and specifically how we define a simulation suitable
aortic valve interface between the two.

Workflow

Figure 3.2 shows the method workflow. The input to the proposed method is a medical image
scan, CT or MR image data. This ´global´ image volume is fed into a heart localization
module which deploys a neural network to perfom a ´rough´ cardiac segmentation. This
segmentation is used to crop the global image volume to produce a smaller volume specifically
containing the heart and its nearby tissue but ignoring the rest. This cardiac subvolume is
used for a detailed 9-class cardiac chamber segmentation using LinFlo-Net method. Using
this cardiac segmentation, we place a seed point in the aortic root to initalize SeqSeg, a
method to perform vascular segmentation of the aorta and its subbranches. The cardiac
and vascular segmentations are finally combined into one using an assembly module. A final
surface mesh containing cardiac chambers and the aorta is then achieved using marching
cubes method with additional mesh post processing functionality.
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Figure 3.2: The MeshGrow method workflow. MeshGrow takes as input a medical images
scan (CT or MRI data) and returns a patient-specific cardiovascular mesh.

Heart Localization

First step is to locate the heart in the global image volume. We utilize a U-Net convolutional
neural network (CNN) for the task. We train a model to perform binary voxel classification
on the global image volume, where each voxel is labelled as either 1 (belonging to cardiac
chambers) or 0 (belonging to any other tissue or organ). Specifically, voxels belonging to
right or left ventricle or right or left atrium are labelled 1. We utilize the nnU-Net framework
for hyperparameter choosing and training [42]. Table 3.1 shows the specifications of model
architecture and data processing.

Cardiac Segmentation

We use LinFlo-Net [87] for cardiac mesh generation. This method aims to transform a tem-
plate cardiac mesh to capture the patient-specific cardiac morphology as seen in a 3D clinical
image (e.g. CT or MRI scan). Briefly, the method utilizes a two-stage mesh deformation
process consisting of a learned affine transformation (scaling, translation, and rotation) fol-
lowed by a diffeomorphic mesh deformation process wherein the vertices of the template
mesh are integrated along a learned static 3D flow vector field.

The affine transformation uses a 3D convolutional neural network and predicts the 9
parameters of the transformation (3 parameters each for scale, translation, rotation). This
module is trained to minimize the chamfer distance in the L1-norm between the template
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Table 3.1: The U-Net architecture and training specifications for the nnU-Net models

Parameter CT MR CT MR
(SeqSeg) (SeqSeg) (Cardiac) (Cardiac)

Intensity 0.5/99.5% all image 0.5/99.5% all image
Normalization clip + z-score clip + z-score

foreground foreground
z-score z-score

Image 0.200, 0.0859, 1.5 1.05
Target 0.0547, 0.0625, 1.5 0.972
Spacing 0.0547 0.0625 1.5 0.972

Patch Size [20,80,80] [40,48,48] [192,112,112] [96,160,160]

Batch Size 33 57 2 2

Max Nr. Features 320 320 320 320

Nr. Stages Encoder 5 4 6 6

Nr. Stages Decoder 4 3 5 5

Nr. Layers per Stage 2 2 2 2

Nr. Pooling [2,4,4] [3,3,3] [5,4,4] [4,5,5]
Ops. per Axis

Conv. Kernel Size [3,3,3] [3,3,3] [3,3,3] [3,3,3]

mesh and target mesh. The diffeomorphic mesh deformation module consists of a U-Net
architecture that is trained to produce a dense flow vector field in the image space. This
module is trained to minimize a weighted sum of various losses including:

1. Chamfer distance in the L1-norm.

2. Normal consistency between template and ground truth meshes.

3. Physics based loss term that prevents volume collapse.

4. Mesh regularization, which includes edge length, normal consistency across faces, and
Laplacian smoothing loss.

The reader is referred to the original article for further details on each of these loss terms.
The template mesh is a multi component surface mesh representing the blood pools of the

four cardiac chambers, the myocardium of the left ventricle, and segments of the pulmonary
artery and aorta where they attach to the heart. Since the vascular segmentation method that
we use requires a seed-point for initialization, we add an additional region to the template
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mesh consisting of the aortic root. Figure 3.3 shows the template mesh with the newly
added aortic root region. The new region was created using MeshLab [16] by cutting the
aorta template mesh with a plane.

aorta

aortic
root

(a)

AORTIC
VALVE
LEFT

VENTRICLE

DIRECTION OF
TRACKING

(b)

Figure 3.3: (a) Template mesh used for cardiac segmentation showing the added aortic
root region. (b) Automatic initialization of aorta tracking starting from the aortic valve,
determining direction using the aortic valve and left ventricle mesh regions.

Vascular Segmentation

Vascular segmentation is achieved using the Sequential Segmentation (SeqSeg) method [113].
The method constructs vessel segmentation by piece-wise addition of local segmentations
predicted using a deep learning based U-Net convolutional neural network. SeqSeg automat-
ically tracks vasculature by inferring direction and bifurcations from local vessel features.
The method works for any vasculature but requires a seed point, direction and vessel radius
estimate for initialization. For MeshGrow, we implement a new way to automatically initial-
ize SeqSeg around the aortic root with information calculated the cardiac mesh prediction.
Each of these components are described in further detail below.

Neural Network Model and Training Strategy

We deploy a deep neural network to perform vascular segmentation of local subvolumes.
We use a 3D U-Net convolutional neural network with hyperparameters determined using
the nnU-Net framework, see [42] for further details on methodology and [113] for specific
parameter values chosen for local aortic segmentation. For training we sample each global
vascular segmentation in the training dataset solely around the global vascular centerline.
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This allows us to create a new dataset of subvolumes containing only pairs of raw image data
and vessel segmentations located around the annotated areas of the global volume. This both
makes improved use of available annotated data and introduces a beneficial inductive bias
in our neural network model that allows it to generalize to vessels not annotated in training
datasets, see [113] for further details.

For training, we use a combined loss l of Dice score D(x, y) and binary cross entropy
BCE(x, y) calculated between a pair of raw image data x and its ground truth binary
vascular segmentation map y:

l(x, y) = 1−D(x, y)−BCE(x, y) (3.1)

Automatic Initialization

The SeqSeg method requires a seed location, direction of tracking and vessel radius estimate
for initialization. We automatically initialize SeqSeg at the aortic root by processing the
cardiac mesh prediction. The part of the cardiac template mesh representing the aortic
valve as a surface is labelled as an additional ninth class. Let us denote regions of mesh
vertices as sets Sj, where Sj := {vi|C(vi) = j} where vi ∈ R3 is a vertex and C(v) is the
cardiac class label map. For initialization we use the regions representing left ventricle (LV),
labelled j = 8 and aortic valve (AV), labelled j = 9. Additionally, define corresponding
sets Nj of normal vectors ni ∈ R3, Nj := {ni|C(vi) = j} for each class j. For automatic
initialization, these labelled regions are processed as follows:

1. The average node location is calculated for AV and LV

v̄j =
1

|Sj|
∑
vi∈Sj

vi , j ∈ [8, 9] (3.2)

2. The average normal vector is calculated for AV

n̄9 =
1

|N9|
∑
ni∈N9

ni (3.3)

3. Since there are two possible normals to the surface, the direction of tracking d̄ ∈ R3 is
chosen as the AV average normal n̄9 facing away from center of LV v̄8

d̄ =

{
n̄9, if (v̄9 − v̄8) · n̄9 > 0

−n̄9, otherwise
(3.4)

Initial seed point is chosen as two radii distance into the aorta; s0 = v̄9 + d̄ ∗ 2R where R
is aortic root radius estimate. We observe that only a rough radius estimate is enough for
initialization, we use R = 1.3cm.
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Tracking and Bifurcation Detection

Once initialized with above mentioned information, SeqSeg extracts the first subvolume
around the aortic root for segmentation. The neural networks outputs a binary segmentation
with voxels either predicted as vessel, 1, or not, 0. A surface mesh is extracted from the
segmentation using marching cubes [64] and inlet and outlets are automatically detected by
defining holes in the surface mesh. These inlet and outlets are then used as source and target
points for centerline extraction, see [113] for further details. The centerline is then used to
determine direction and size of the vessel, which is then used to move and to extract a new
subvolume proportional to the vessel. In the case of multiple branches, one is chosen to move
to next and the others are saved in a bifurcation queue for subsequent tracking.

For centerline extraction, we deploy a levelset based method from [35]. A wave propa-
gation is modeled starting from the inlet and moving within the segmentation, with higher
propagation speed further away from the vessel boundaries. In mathematical terms, we solve
the nonlinear Eikonal equation:

|∇T (x)|F (x) = 1 (3.5)

where T (x) is the time it takes for the wavefront to reach location x ∈ R3 and F (x) is the
speed function defined at each point. The speed is set to be higher in the center of the vessel
compared to locations closer to its walls, so we end up getting a solution T (x) with lower
values in the center. Finally, with T (x), we perform gradient descent starting from each
outlet point, step-wise leading us back to the start of the wave propagation (source point).
See [35] for further details. The output from the centerline extraction is set of connected
nodes representing branches and their connections, each node containing a radius estimate of
the vessel at that point. The automatic tracking ends when one of three instances occurs; 1)
we reach the global image boundary, 2) the segmentation quality is not sufficient enough for
centerline extraction or 3) number of steps taken has surpassed maximum number allowed.
Post tracking, a global binarized segmentation of the vasculature is assembled.

Global Vascular Segmentation Assembly

The global vascular segmentation is assembled together from all local segmentations pre-
dicted while tracking. Note that many of these local segmentations overlap. The probabilis-
tic map output prediction from the neural network model, with each voxel ranging [0, 1], is
stored while tracking and is finally averaged together. Specifically for set Z of local segmen-
tations that included voxel yi,j,k with i, j, k referring to its global index, the final voxel value
is:

yi,j,k =
1

|Z|
∑
s∈Z

zi,j,k (3.6)

where zi,j,k ∈ [0, 1] are corresponding predicted probability the voxel belongs to vessel from
each local segmentation. This is done on using the original global image volume resolution.
As a last step, we threshold the averaged global probabilistic using t = 0.5 to get a binarized
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segmentation:

yi,j,k =

{
1 if yi,j,k ≥ t
0 if yi,j,k < t

(3.7)

A global vascular surface mesh is created using marching cubes and is smoothed. Finally, a
global centerline is also extracted from the global vascular segmentation. This centerline is
then used to automatically define caps on the surface mesh for setting boundary conditions.

Automatic Capping at Outlets

Outlets of the global vasculature mesh are detected using the global centerline. Where
outlets are detected, caps are defined using a box clip boolean operation on the surface
mesh to obtain a planar surface for boundary condition setting. The outlets are located
at centerline nodes only connected to one other node. The location of the node and the
tangent of the centerline there are used to position and rotate the box clip operator. The
box is rotated so that one of its sides is perpendicular to the vessel tangent. The size of
the box is proportional to the size of the vessel there to prevent accidental clipping of other
vessels, specifically the box sidelength l is calculated according to l = 3× R where R is the
approximated radius of the vessel at that point. Once the box operator is defined, the nodes
belonging to the vascular mesh that are located inside the box operator are removed. We
then place new elements onto the cut plane to fill the hole in the mesh produced by the box
clip operation. These new elements are now labelled as elements belonging to an outlet and
are used to set boundary conditions. After defining the outlets of the vascular geometry, we
combine the vascular geometry with the cardiac geometry to produce a single unified model.

Union and Mesh Generation

Once we have both a cardiac prediction (from a template-based method) and a vascular
prediction (from a tracking voxel-based approach), we unify the two geometric models into
one.

Union of Segmentations and Valve Definition

Like mentioned above, we obtain two aortic segmentations; one from LinFlowNet, YLF , and
another from SeqSeg, YSS. We combine construct the unified model using both segmenta-
tions. Specifically, we prioritize the YLF segmentation in a volume defined around the aortic
valve to guarantee correspondence to the predicted cardiac chambers and elsewhere we use
YSS. In full detail, we perform the following:

1. Calculate the center and extent of the aortic valve. We have the elements belonging
to the aortic valve labelled in our original cardiac template. Post deformation of
the template, we calculate the area of the resulting deformed valve elements, AAV .
Additionally we calculate the centroid of the aortic valve surface, CAV .
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2. Define a rectangular volume around the aortic valve based on CAV and AAV . Specifi-
cally, the dimensions of the rectangle are defined as the bounding box of the aortic valve
with added pixels in each dimension to enlarge: L = 30,W = 30, H = 15 pixels were
added in each dimension, where L,W,H are length, width and height, respectively.

3. In a volume defined around the vascular valve, we use YLF segmentation and elsewhere
we use YSS

Like mentioned, in a rectangular volume defined around the aortic valve, the LinFlo-
Net aortic segmentation is prioritized. Since the aortic valve is labelled in the LinFlo-Net
prediction, this allows the aortic valve interface to be defined in the final combined model.

Mesh Generation

Once the final multiclass cardiovascular segmentation is defined, marching cubes algorithm
is applied to obtain a surface mesh representation of the geometric model[64]. Finally, we
perform global Laplace smoothing to get a smooth surface mesh ready for volumetric meshing
and simulation. The end product is a global surface mesh with defined regions for different
cardiac and vascular regions, as well as the aortic valve boundary and vascular caps.

Experimental Setup

In this section, we list the datasets used for training and testing of our method. Additionally,
we explain the ground truth used for comparison of results as well as the metrics used for
quantitative analysis.

Training data

We use the same data as [87] to train LinFlo-Net. The training data consists of data from four
public datasets including the multi-modality whole heart segmentation challenge (MMWHS)
[133], orCaScore challenge [126], left atrial wall thickness challenge (SLAWT) [48], and left-
atrial segmentation challenge (LASC) [122]. In total we had 101 CT samples and 47 MR
samples in our dataset.

We use the same data as [113] to train the neural network in SeqSeg. The data is a
subset of the Vascular Model Repository (VMR), which is available at vascularmodel.com.
Specifically, we train a SeqSeg model on a total of 33 aortic models from VMR. Five aorta
cases are kept separate for testing purposes.

Test data

Since the objective of this work is to present a unified method to generate consistent car-
diac and vascular segmentations, it is important to consider image samples that capture the
structures of interest sufficiently. In particular, we are interested in cardiac + aortic segmen-
tations, therefore we consider image samples that capture the whole heart along with the

vascularmodel.com
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descending aorta. We include 5 CT and 5 MR images that meet this criteria as part of our
test data. CT test samples were selected from the Vascular Model Repository (VMR) (vas-
cularmodel.com) and MR test samples were selected from the MMWHS [133] test dataset.
We report the names of the samples in table 3.2.

CT (VMR) MR (MMWHS)
0027 H AO MFS mr test 2003
0025 H AO MFS mr test 2004
0075 H AO H mr test 2005
0153 H AO H mr test 2006
0157 H AO H mr test 2006

Table 3.2: Test samples used to evaluate the performance of the proposed workflow. CT
samples were taken from the VMR dataset and MR samples were taken from the MMWHS
test dataset.

Ground-truth segmentations of the vasculature is available for the CT samples through
the VMR dataset. Similarly, ground-truth segmentations of the cardiac regions are avail-
able for the MR samples through the MMWHS dataset. (Note that the MMWHS dataset
does not provide the ground-truth explicitly. Rather, the challenge organizers provide en-
crypted executable scripts which may be used to evaluate the accuracy of model predictions.)
Therefore, we had to generate ground-truth cardiac segmentations for the CT test data and
ground-truth aortic segmentations for the MR data.

We used TotalSegmentator [125] to generate the ground-truth cardiac segmentations
using the heartchambers highres subtask followed by manual verification. The gener-
ated segmentations for all samples except 0157 H AO H appeared reasonable to us. Sample
0157 H AO H required manual correction of the segmentation of the myocardium, see Fig-
ure 3.4. Indeed, this particular failure case underscores the efficacy of a template based
method since mesh templates provide a strong shape prior for model predictions, enforcing
topological consistency and anatomical accuracy.

For aortic ground truth segmentations, we used SimVascular modeling pipeline [123]. The
models were constructed by manual pathline generation and subsequent 2D segmentation
of lumen cross sections. 2D segmentations were done using thresholding and manual spline
point placements.

Metrics

For quantitative comparison between the segmentation results from our method, Y and the
ground truth segmentations, X, we compute Dice score:

D(X, Y ) ==
2 · ∥X ∩ Y ∥
∥X∥+ ∥Y ∥

(3.8)
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(a)

(b)

Myocardium LV Blood Pool

Figure 3.4: (a) Cardiac segmentations of sample 0157 H AO H produced by TotalSegmenta-
tor contain a hole at the apex of the myocardium. (b) We manually fixed this segmentation
for evaluation purposes.

For aortic vascular segmentation results, we do a more comprehensive analysis and compute
Hausdorff distance, H and centerline overlap, CO, as well:

H(X, Y ) = max{d(X, Y ), d(Y,X)},
where d(X, Y ) = supx∈X infy∈Y d(x, y)

(3.9)

CO(Y,Ct) =

∫
Ct
Y dx∫

Ct
dx

(3.10)

where Ct is the ground truth centerline. Since our vascular segmentations are, in most
cases, more extensive than the ground truth being compared to, we clip the prediction to
place outlets at the same locations. Figure 3.5 shows the process for clipping the vascular
segmentations to match outlets with the ones chosen in ground truth models.
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Figure 3.5: Box clipping resulting vascular segmentations to place outlets at same locations
as chosen for manual ground truth case for geometric comparison.

3.4 Results

We test the method on 10 withheld test cases, 5 CT and 5 MR image data. Tables 3.3, 3.4
show the quantitative metric results for our method on these test cases, cardiac and vascular,
respectively.

Binary Cardiac Segmentation

The method begins by doing a ‘rough‘ binary cardiac segmentation in the global image
volume to estimate the location and bounds of the cardiac structures. See Figure 3.6 for
qualitative comparison of the binary segmentation with ground truth cardiac models for the
five held out CT test cases.

Cardiac Model

After localizing the cardiac structures and extracting a subvolume arounds its bounds, we
predict a multiclass cardiac model for it. The Dice score results for the different cardiac
chambers is presented in Table 3.3, for the myocardium, left and right ventricle, left and
right atrium, pulmonary artery and aorta. The average Dice score for each chamber is
shown in bold font. The Dice score was highest for the ventricles; on average 0.94 and 0.903,
for the left and right, respectively. On average, the Dice score for atrium predictions were
0.892 and 0.884 for the left and right, respectively. The resulting meshes are presented for
comparison with ground truth models in the first two columns in Figure 3.7.
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Figure 3.6: Comparing the ‘rough‘ binary cardiac segmentations with the ground truth for
the CT data. The binary segmentations are used to approximate the bounds of the cardiac
region, which is subsequently used for detailed multiclass cardiac model prediction.

Vascular Model

As explained in Sec 3.3, we place a seed point for performing aortic vascular segmentation
using the aortic root predicted in the cardiac model. The quantitative metric results for
the five CT test cases are presented in Table 3.4. On average, our method gets a Dice
score of 0.959, Hausdorff distance of 0.702 (in pixels), and centerline overlap of 0.978. For
a qualitative comparison, the resulting aortic meshes and the ground truth as shown in
Figure 3.7, third and fourth columns.

For comparison between a step-wise localized vascular segmentation method (SeqSeg)
and a template based method (LinFlo-Net), we present the respective resulting meshes in
Figure 3.8. The template deformation prediction outputs only a truncated

Combined Cardiovascular Model

The resulting cardiac and aortic vascular segmentations are combined into unified cardio-
vascular models, shown as last column in Figure 3.7.
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Table 3.3: Quantitative metric results on cardiac chambers of the geometric model; MYO:
myocardium, LA: left atrium, LV : left ventricle, RA: right atrium, RV : right ventricle,
PA: pulmonary artery, AO: aorta. Metric, D: Dice score as defined in Sec. 3.3

D ↑
Case Name MYO LA LV RA RV PA AO

CT 1 0174 0.866 0.915 0.955 0.916 0.943 0.856 0.964
2 0176 0.806 0.814 0.909 0.891 0.913 0.692 0.953
3 0188 0.831 0.934 0.940 0.823 0.840 0.852 0.957
4 O15032 0.880 0.937 0.959 0.927 0.926 0.678 0.949
5 O34421 0.861 0.862 0.937 0.866 0.892 0.893 0.972

Ave. - 0.849 0.892 0.940 0.884 0.903 0.794 0.876
MR 1

Table 3.4: Quantitative metric results for aortic vascular regions of the geometric model;
AO: aorta from SeqSeg. Metrics shown; D: Dice score, H: Hausdorff distance score, CO:
centerline overlap score, as defined in Sec. 3.3

Case Name Nr. Nr. D ↑ H ↓ CO ↑
Steps Branches

CT
1 0174 232 6 0.972 0.412 0.984
2 0176 295 6 0.949 0.921 0.994
3 0188 76 6 0.953 1.065 0.964
4 O15032 138 5 0.957 0.668 0.988
5 O34421 29 4 0.964 0.443 0.961

Ave. - 0.959 0.702 0.978
MR 1

3.5 Discussion

We present a novel automatic cardiovascular model construction method. The method takes
in a medical image scan of a patient and outputs a patient-specific three-dimensional sim-
ulation ready mesh of the cardiac chambers and the aorta with defined inlets, outlets and
aortic valve interface. This is, to our knowledge, the first comprehensive cardiac and vascular
model construction method.

We deploy two different deep learning based modeling approaches for cardiac and vas-
cular model construction independently. Both modeling approaches require neural network
training. We train and test the method on a dataset of CT image scans. We compare the
outputs of a held out test set to manually constructed 3D models. The cardiac chamber
segmentations achieve, on average, Dice scores of 0.849, 0.892, 0.940, 0.884, and 0.903 for
the myocardium, left atrium, left ventricle, right atrium and right ventricle, respectively.
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Figure 3.7: Qualitative results for our method compared to ground truth segmentations.
From left: cardiac region ground truth, cardiac region prediction results (from LinFloNet),
aorta ground truth, aorta prediction results (from SeqSeg), and the final combined cardio-
vascular model.

Because of the nature of SeqSeg being a step-wise growth approach, the vascular segmenta-
tions often extend further than the ground truth cap placements. After placing caps at the
same locations, the vascular segmentations, on average, get a Dice score of 0.959, Hausdorff
distance score of 0.702 pixels, and centerline overlap score of 0.978.

We demonstrate the advantage of anatomy specific modeling approaches. Motivated by
template deformation approaches for cardiac modeling by Kong, Narayanan, and Shadden,
we apply it for our purposes here [51, 87]. Because of increased variability in vascular
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Figure 3.8: Qualitiative comparison between the ground truth, manually segmented aorta
and the results from our methods. Here we show the limitation of a template based approach
(LinFloNet) for aortic segmentation, as compared to a stepping and growth based approach
(SeqSeg). From left: ground truth model, aortic segmentation from LinFloNet method and
aortic model results from SeqSeg method.

topology, we deploy a vessel tracking “step taking“ based modeling approach. We compare
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the vascular segmentation of a template based approach with ours (SeqSeg[113]) and show
that template deformation struggles with outputting extensive vasculature models.

In this work, we have well defined starting locations of downstream vasculature of in-
terest, the valves, making tracking approaches requiring seed points, like SeqSeg, easier to
implement. Instead of having to locate the vascular root from a global image volume, we
utilize the predicted cardiac model for seed point placement. Our method depends on locat-
ing the cardiac region in an image volume, but that is an easier task (we show by a simple
U-Net binary segmentation) than directly predicting vascular seed location.

A main limitation of this work is the small test dataset. A dataset of combined cardiac
and vascular models is not yet available for general research, hence motivating the work
presented, so we had to construct the ground truth test data in house and could not make
it larger because of limited resources. Another main limitation is the missing investiga-
tion of the effect of these machine learning based modeling approaches on the downstream
simulation results, and specifically comparing them to simulation results from manually con-
structed models. This remains an open area for research. In this work, we demonstrate an
application using these geometric models, a fluid-structure interaction simulation involving
the left ventricle and the aortic tree vessels, but we do not demonstrate applying boundary
conditions to the aortic valve directly. Additionally, the motion used to prescribe deforma-
tion boundary conditions in the simulation is estimated, and a real motion has still yet to
be tested. However, the authors believe this work is beyond the scope of this paper, where
the purpose of the simulation was to show an example of using the paper’s proposed method
for a downstream task.

In conclusion, we present an automatic method to construct comprehensive three di-
mensional cardiovascular geometric models based on medical images. We hope this work
can facilitate patient-specific cardiovascular simulation research and its entry into clinical
settings for patient care. Future directions of the work include investigating the effects of
machine learning based automated model construction methods on simulation results as well
as incorporating additional anatomical features, e.g. valves and veins.
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Chapter 4

MIROS: Patient-Specific Reduced
Order Model Simulation in Minutes

4.1 Abstract

Patient-specific cardiovascular simulations have become an integral part of cardiovascular
research. While three dimensional fluid structure interaction simulations result in detailed
high resolution hemodynamic solutions, reduced order models (ROM) offer a lower compu-
tational cost option while capturing considerable dynamic behavior. However, despite these
ROMs, either lumped parameter networks (0D) or Navier-Stokes averaged across the cross
section (1D), having the ability to model complex blood flow in vascular networks, they
require patient-specific geometric models (which can take hours to construct) and several
different packages to run, making their large scale use infeasible. We aim to address this
issue by presenting MIROS (Medical Image to Reduced Order Simulation) framework. This
method is a fully integrated, semi automatic workflow to go from a medical image scan to
reduced order simulation results in minutes time. We utilize machine learning methods (Se-
qSeg) for automatic geometric model construction based on image data and automatically
place vessel caps for inflow and outflow boundary conditions. We validate our method on
datasets of CT and MR aortic and aortofemoral models, achieving an average error < 3%
for 0D simulations and < 4% for 1D simulations. We hope this work may facilitate the use
of reduced order models both in cardiovascular research and, ultimately, patient care.

4.2 Introduction

In the past three decades, the development of image-based modeling and computational fluid
dynamics (CFD) for simulating blood flow [117] [85] has greatly enhanced our understand-
ing of pathogenesis [78] [7], enabled more personalized diagnostics [95] [107], and improved
treatment planning for various cardiovascular diseases [95] [74]. Detailed fluid-structure in-
teraction (FSI) simulations and digital twins show great potential to serve as noninvasive
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Figure 4.1: Increased resolution in hemodynamic modeling requires additional compution
cost. Reduced order models, 0D and 1D, offer an alternative to the costly 3D simulations,
requiring much lower computational resources but losing out on solution resolution. Parts
of figure are borrowed from SimVascular documentation, https://simvascular.github.
io[123].

tools for clinicians [9]. As a result, these techniques not only help advance basic research,
they also expand into patient care, supporting more efficient and tailored therapeutic inter-
ventions.

One key advantage of these FSI models and digital twins lies in their ability to cap-
ture the complex mechanics between blood flow and vessel walls, thereby offering deeper
insights into the onset and progression of vascular pathologies [116]. This physics based
fluid-structure interaction perspective is imperative for modeling disease mechanisms, e.g.
thrombosis formation [101], fibrosis remodeling [11] [118], and aneurysm evolution [110].
Moreover, through high-fidelity simulations, clinicians can compare multiple therapeutic or
surgical interventions in silico, testing “what-if” scenarios specific to each patient’s vascu-
lar anatomy without exposing them to invasive procedures [116]. However, these detailed
simulations often demand specialized expertise in numerical methods [54], large computing

https://simvascular.github.io
https://simvascular.github.io
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resources[82], and substantial processing times [72], thus presenting a major hurdle for clin-
ical adoption. In addition, building a patient-specific 3D anatomical model from volumetric
angiography (CT or MRI) typically also requires specialized expertise and a significant time
investment, further limiting the scalability of these methods for routine clinical use. There-
fore, achieving faster, more automated, and cost-effective modeling frameworks is critical for
enabling patient-specific simulation in cardiovascular research and care.

Reduced-order models (ROMs) offer a promising alternative to full-scale CFD simulations
by substantially lowering computational costs and turnaround times[80] [94]. By simplify-
ing the governing equations—e.g., through lumped-parameter (0D) or one-dimensional (1D)
approaches—ROMs can capture essential hemodynamic behavior while bypassing the intri-
cacies that make FSI simulations computationally expensive. See Figure 4.1 for a schematic
comparison between 0D, 1D and 3D simulations, both in terms of computation cost and
solution resolution. Even if the results are approximate and at lower resolution, ROM sim-
ulations can be highly informative in several scenarios including timely decision support,
screening, boundary condition tuning, uncertainty quantification and treatment design.

Yet, despite the advantages of ROM simulations for hemodynamic modeling, the lack of
automated and fully integrated workflows makes extensive patient cohort studies and clini-
cal research infeasible. Creating an image-based simulation is labor-intensive and requires a
spectrum of expertise. On one hand, generating an anatomically accurate and simulation-
suitable model is time-consuming, often taking hours, and becomes even more challenging
for complex and highly branched geometries (e.g., coronary arteries and vascular trees). On
the other hand, selecting an appropriate ROM solver and configuring it correctly to produce
consistent physiological simulations demands expertise in coding, numerical methods, hemo-
dynamics, and data visualization. Finally, integrating these steps into a seamless pipeline
remains a significant challenge, as researchers often rely on fragmented tools that require
substantial manual intervention and customization at each stage. This lack of a cohesive
workflow limits the scalability of ROM simulations for research and creates significant bar-
riers to their adoption in clinical practice.

With this in mind, we developed a streamlined process to produce reduced-order model
(ROM) simulations of patient-specific hemodynamics directly from volumetric angiography.
Our framework integrates lumped-parameter and 1D Navier–Stokes solvers—both of which
are readily available in the open-source SimVascular software [123]—with machine learning
based segmentation techniques, Sequential Segmentation (SeqSeg) [113], to automate vas-
cular model construction. The result is a workflow that significantly reduces the time and
expertise needed to go from medical images to informative simulations of blood flow. This
cumulates in patient-specific simulation results ready on the order of minutes after acquiring
a medical image scan.

To evaluate the effectiveness of the medical-image-to-reduced-order-simulation (MIROS)
framework, we present a comparative study contrasting the ROM simulation outcomes gen-
erated from SeqSeg-constructed vascular models against those obtained from traditional,
manually constructed counterparts from the open access Vascular Model Repository (VMR)
at https://vascularmodel.com. Our findings reveal that the automated MIROS pipeline

https://vascularmodel.com
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delivers accuracy and reliability on par with manual workflows–well-predicting bulk flow and
pressure waveforms–underscoring its potential for diverse applications. By leveraging the
strengths of ROMs—lower computational costs and faster turnaround—this integrated ap-
proach can not only facilitate fundamental research endeavors, including boundary condition
tuning and uncertainty quantification, but also advance potential practical hemodynamic as-
sessments in clinical settings.

To summarize, we herein present a fully integrated and almost automated framework for
patient specific reduced order modeling capable of the following:

1. After being initialized with a seed point, automatically constructing a patient-specific
geometric model of vasculature from patient medical image scan (CT or MRI)

2. Automatically processing the patient-specific geometric model and placing outlet and
inlet caps for boundary conditions

3. After boundary condition placement, automatically setting up reduced order models
(0D or 1D) of the representative vasculature and solving for resulting flow and pressure

4. Outputting the simulation results in easy to visualize format for downstream analysis

4.3 Methods

We present MIROS, a novel automated framework for patient-specific blood flow reduced
order model simulation results. In this section we begin by covering the overall workflow of
the framework. Subsequently, we discuss the reduced order models for blood flow we use, 0D
and 1D, followed by the methods we use for automated patient-specific geometric modeling,
and post processing of the resulting geometric information. Finally, we cover the solvers we
use and the experiments we ran and for which we present results in subsequent sections.

Workflow

The workflow of the framework can be viewed in Figure 4.2. The input is a medical image
scan of a patient along with a seed point and radius estimate in the vessel of interest. The
seed information is used to initialize the automatic vascular model construction method,
SeqSeg [113], which automatically tracks the downstream vasculature and assembles a vas-
cular segmentation to match the medical image. The resulting segmentation is converted to
a surface mesh using marching cubes algorithm which is then used to extract a centerline
with accompanied radius estimates. The centerline is then input for further processing to
acquire the patient-specific geometric attributes necessary for reduced order modeling. After
the reduced order model equations with relevant attributes have been setup, they are solved
using the specific solvers (0D or 1D). Each step is explained in further detail below.
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Figure 4.2: The method workflow. Starting from a medical image volume and seed point,
automatic geometric model construction, post processing, reduced-order model setup and,
after solving, ending with patient-specific 0D and 1D simulation results of blood flow.

Reduced Order Model

Reduced order models balance computational efficiency with the ability to capture essential
hemodynamic behavior. Below, we briefly summarizes the principles of 0D and 1D modeling
approaches.

1D

In reduced-order modeling of cardiovascular systems, one-dimensional (1D) modeling
simplifies the governing Navier-Stokes equations by integrating them across the cross-section
of the blood vessel, under the assumption of an axisymmetric velocity profile. The 1D solver
we employ is svOneDSolver, and the detailed implementation is discussed in the original
paper [94]. As a summary, the 1D reduced-order of Navier-Stokes equations governing equa-
tions is the follow:

∂Q

∂t
+

4

3

∂

∂z

(
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)
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∂P

∂z
= Sf − NQ
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(4.1)

∂S

∂t
+

∂Q

∂z
= 0, z ∈ Ω1D, t ≥ 0. (4.2)

Here, Q is the flow rate, P the pressure, and S the cross-sectional area along the axial
coordinate z. The parameter N depends on the velocity profile, with N = 8µ

π
for a Poiseuille

flow profile. Constitutive relations further define the pressure-area relationship, such as the
linear or Olufsen models:
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Linear: P (z, t) = P0(z) + k0
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)
. (4.4)

where, E represents the Young’s modulus of the vessel wall material, h denotes the thickness
of the vessel wall, P0 refers to the reference pressure, r0 is the reference radius, and k0, k1,
k2, and k3 are material constants determined empirically [92].

The solver automatically detects junctions and stenosis leveraging a series of open source
python libraries such as SciPy and VTK. Boundary conditions include continuity of static
pressure at vessel junctions and conservation of mass. Numerical solutions utilize implicit
finite element methods, ensuring efficiency and stability for patient-specific geometries.

0D

Zero-dimensional (0D) models, or lumped parameter networks (LPNs), reduce solving
3D Navior-Stoke equation for hemodynamic analysis to temporal distributions of flow and
pressure. Likewise, the detailed disuccssion of solver implementation is in the original paper
[94]). To briefly summarize, analogous to electrical circuits, the basic elements include
resistance (R), capacitance (C), and inductance (L):

∆P = RQ, (4.5)

Q = C∆Ṗ , (4.6)

∆P = LQ̇. (4.7)

These parameters depend on vessel geometry and properties [76]:

R =
8µl

πr4
, C =

3lr3

2Eh
, L =

ρl

πr2
. (4.8)

Nonlinear effects, such as those due to stenoses, are captured by augmenting Poiseuille
resistance in the 0D model:

Rexpansion = Kt
ρ

2S2
0

(
S0

Ss

− 1

)2

|Q|. (4.9)

where Kt = 1.52 is a commonly used empirical correction factor and S0, Ss are the lumen
areas proximal to and at the location of the stenosis, respectively [111][81][43].
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The zero-dimensional (0D) simulation methods have been implemented as an open-
source Python package available at https://github.com/SimVascular/svZeroDSolver.
The svZeroDSolver framework leverages the modular nature of 0D models, enabling the
construction and simulation of various configurations. Commonly used elements, such as
Poiseuille-based resistors, are included. Each 0D building block is associated with a set of
equations governing the local flow physics.

In both 1D and 0D models, assumptions of continuity in static pressure and conservation
of mass govern junction behavior. The 1D formulation incorporates wave propagation, a
feature absent in 0D models. However, this added capability comes with approximately six
times the computational cost[94]. The computational efficiency of 0D models makes them
particularly suited for large-scale parametric studies or uncertainty quantification, despite
their inherent limitations in capturing local flow features. However, note that there is a
newly iterated, upgraded, and better performing version svZeroDSolverPlus available.

Besides the impact of various numerical methods, the accuracy of any numerical simula-
tion is also largely dependent on model construction. Unlike the traditional manual process
of creating a 3D anatomical model, here we leveraged a recent development of a machine-
learning based segmentation method that automatically constructs anatomical models from
medical images.

Automatic Model Contruction

The three dimensional patient-specific geometric models are constructed automatically using
SeqSeg (short for Sequential Segmentations)[113]. SeqSeg takes in as input a medical image
scan of patient (CT or MR data) and a seed point and tracking direction, and outputs a
three dimensional surface mesh of the resulting vasculature. The overall SeqSeg method is
displayed in Figure 4.3. In this section, we will briefly explain the SeqSeg method, for more
details we direct readers to the original paper[113].

Figure 4.3: The SeqSeg method used for automatic patient-specific geometric model con-
struction from CT,MR image scans. SeqSeg is initialized with a seed point and direction at
the proximal most part of the vasculature. Figure is borrowed from SeqSeg paper[113]

https://github.com/SimVascular/svZeroDSolver
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Algorithm

A figure describing the algorithm can be seen in Figure 4.3. The SeqSeg algorithm is initial-
ized with a single seed point, direction and a radius estimate in vasculature of interest. The
seed point and radius is estimate is used to define the first subvolume for segmentation. The
SeqSeg method performs local segmentations around a vessel segment. Once a segmentation
is predicted, SeqSeg calculated a local centerline of the vessel segment. The centerline is
used to choose the next point to move to and predict segmentation over. In the case of
bifurcations, additional detected branches are accumulated in a ‘bifurcation queue‘ where
they are revisited once the current branch has finished. Simply put, SeqSeg loops over and
moves to branch points detected from local segmentation predictions. The segmentation is
done using a deep neural network trained on a dataset of vessel segmentation subvolumes.

Segmentation

The segmentation prediction is done using a nnU-Net neural network architecture [42]. The
nnU-Net is a U-Net neural network architecture with hyper parameters configured for easier
implementation. The U-Net is a convolutional neural network, typically used for medical
image segmentation because of its impressive performance on pixel classification tasks [102].
The neural network is trained on a dataset of vascular segmentation subvolumes. Specifics
on dataset use are discussed in Section 4.3. These global vascular segmentations are used to
extract thousands of local subvolumes for training. The loss used in training is a combination
of negative Dice score (D) and binary cross-entropy (CE), calculated per batch:

L =

Nb∑
i

(1−D(Yp,i, Yt,i)− CE(Yp,i, Yt,i)) (4.10)

D(Yp, Yt) =
2 · ∥Yp ∩ Yt∥
∥Yp∥+ ∥Yt∥

(4.11)

CE(Yp, Yt) =
1

n

∑
y∈Y

(yt · log yp + (1− yt) · log (1− yp)) (4.12)

where Nb is batch size, Yp and Yt are respective prediction and ground truth segmentation
masks, respectively, and n is the total number of voxels.

Centerline Extraction and Step Taking

Once segmentation is done, a centerline is calculated to describe the branch (or branches
in the case of bifurcations) geometry. The centerline describes the layout of the branches
with locations and radius estimation along them. The centerline is computed by solving the
Eiqonal equation:

|∇T (x)|F (x) = 1 (4.13)
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for T (x), a time distance field, for a given ‘speed‘ defined at all locations[35]. The equation
models wave propagation, that starts at the inlet of the vascular segmentation (previous
point). With this time distance field, the centerlines are traced with gradient descent, starting
at the detected outlets. For more details, see [35]. The radius is estimated using a signed
distance field of the local segmentation predicted, similarly calculated by solving Eq. 4.13
for the boundary voxels in an image.

Global Assembly

As SeqSeg takes steps and performs local segmentations, they are accumulated into a global
‘assembly‘ segmentation. The global segmentation is an average of all local segmentations.
Once assembled, a global surface mesh is attained using marching cubes and smoothed using
Laplace smoothing[64].

Post Processing

With the automatic model construction complete, the next step is to refine these outputs
for simulation. In the following section, we describe the essential post-processing proce-
dures—such as boundary clipping, centerline extraction, and solvers—that prepare the au-
tomatically generated models for robust hemodynamic simulations.

Boundary Clipping

SeqSeg can capture more vasculature than contained in the manually segmented VMR mod-
els. To apply boundary conditions consistently, we generally needed to truncate the MIROS
models to terminate at the same approximate location as in the VMR models. We auto-
matically compute the coordinates, radius, and unit tangent vector of each endpoint in each
VMR model and then orient and scale clipping boxes to trim the corresponding MIROS
model. We also keep the largest contiguous volume, which is then remeshed to produce our
desired surface. This workflow is shown in part a-c of Figure 4.4.

Centerline Extraction and Geometric Attribute Calculation

The MIROS and VMR 3D image-based models were used to generate a discrete centerline
representation. The centerline extraction was performed using Vascular Modelling Toolkit
(VMTK) functions that generated centerlines paths as well as vessel radius information along
each vessel path. Both the discrete centerlines paths and associated areas along the paths
were required for the ROM flow solver.

Solver

ROM simulation of flow and pressure was performed by SimVascular’s 1D and 0D solvers.
We applied RCR boundary conditions at all outlets with RCR values tuned to clinical mea-
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surements and provided in the VMR repository. In cases where the VMR contained a branch
not included in the MIROS model, we ignore that boundary. Although this does not pre-
serve the global consistency of the boundary conditions, we do this to keep the simulation
consistent between MIROS and VMR models. The overall workflow that MIROS models
undergo is shown in Figure 4.4 for a representative model.

Figure 4.4: Post processing steps, simulation setup and solution; (a) ML based surface (b)
boundary clipping (c) trimmed surface (d) centerline extraction (e) 1D model generation
with boundary conditions (f)&(g) simulated flow and pressure mapped to centerline

Experimental Setup

Here we describe the datasets and metrics used to evaluate our method. We first evaluate
the automatically constructed models geometrically using three different metrics. Secondly,
we compare the simulation results of 0D and 1D simulations of manually constructed models
with our automatically constructed ones. We use the same boundary conditions in both
instances. Finally, we compare the simulation results with ones from a second set of same
manually constructed models. These are constructed by a second expert. This analysis gives
insight into the variability between different modelers and how the automatically constructed
model simulation results compare to it.

Datasets

We train and test the method on a dataset of aortic and aortofemoral vascular models. The
data used is from Vascular Model Repository (VMR), see Table 4.1. The nnU-Net neural
network used in SeqSeg is trained on 33 CT cases and 37 MR cases. CT and MR data was
handled separately, where two different machine learning models were trained to handle each
modality independently.

Metrics

We evaluate the geometric models quantitatively by computing the following metrics in
comparison to the ‘ground truth‘ manually constructed models; Dice score (D), Hausdorff
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Table 4.1: The datasets of patients used for model training and method testing. Abbreviation
are as follows: Mod.: Modality. Datasets; VMR: Vascular Model Repository. Anatomy;
AO:Aorta, AF:Aortofemoral. Disease; H:Healthy, AAA:Abdominal Aortic Aneurysm, MA:
Marfan Syndrome, CA:Coarctation of Aorta, AOD:Aortoiliac Occlusive Disease, SVD:Single
Ventricle Defect. Sex; M:Male, F:Female, U:Unknown. Sex and age information was not
available for the AVT dataset.

Dataset Mod. Train/Test Anatomy Disease Sex Age(yr)

VMR CT 33/6 25 AO, 23 H, 23M 6 - 80
16 AF 15 AAA, 6F ave: 58

3 MA 12U

VMR MR 37/6 38 AO, 19 H, 14 CA, 30M 0.6 - 67
6 AF 5 SVD, 14F ave: 17

2 MA 4 AOD

distance score (H), and centerline overlap score (CO). The metrics are defined as follows:

D(X, Y ) ==
2 · ∥X ∩ Y ∥
∥X∥+ ∥Y ∥

(4.14)

H(X, Y ) = max{d(X, Y ), d(Y,X)},
where d(X, Y ) = supx∈X infy∈Y d(x, y)

(4.15)

CO(Y,Ct) =

∫
Ct
Y dx∫

Ct
dx

(4.16)

where X,Y are the ground truth and predicted segmentation maps, respectively, and Ct is
the ground truth centerline.

We evaluate the simulation results by comparing to the ‘ground truth‘ results from man-
ually contructed models. We calculate error in simulated flow, EQ, and pressure, Ep, using
the average relative absolute difference in value at each vessel cap:

EQ =
1

T

∫
T

|QT −QP |
QT

(4.17)

Ep =
1

T

∫
T

|pT − pP |
pT

(4.18)

where T is total cardiac cycle time, QT , pT are ground truth flow and pressure and QP , pP
are predicted flow and pressure values, respectively.
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4.4 Results

We present comparison results of reduced order model simulations from ‘ground truth‘ man-
ually constructed geometric models with ones from automatically constructed models (ours).
We first, compare the two sets geometrically, using the metrics explained in Sec. 4.3 for a
quantitative analysis. Secondly, we compare the simulation results values, flow and pressure,
computing errors between the two sets over the cardiac cycle.

Geometric

Geometric quantitative metric results for the test set, CT and MR, are presented in Table 4.2.
Dice scores range from 0.881 to 0.965 with an average of 0.944 and 0.918 for CT and MR test
data, respectively. Hausdorff distance score was on average 1.54 and 1.947 pixels for CT,
MR data, respectively. Finally, centerline overlap scores were on average 0.958 and 0.974 for
the CT and MR data, respectively.

For a qualitative comparison, we have the resulting vascular geometric models plotted in
Figure 4.6. We show the machine learning based models compared with the ‘ground truth‘
manually constructed ones, both CT and MR test datasets.

Table 4.2: Quantitative metric results for the vascular geometric models; Metrics shown; D:
Dice score, H: Hausdorff distance score, CO: centerline overlap score, as defined in Sec. 4.3

Case Name Nr. D ↑ H ↓ CO ↑
Branches

CT 1 0174 0000 5 0.965 1.379 0.916
2 0176 0000 5 0.948 0.967 0.994
3 0188 0001 aorta 6 0.952 1.037 0.974
4 O150323 2009 aorta 5 0.958 0.689 0.988
5 0139 1001 9 0.925 1.862 0.930
6 0146 1001 10 0.918 3.307 0.948

Ave. - - 0.944 1.540 0.958

MR 7 0006 0001 9 0.881 1.533 0.975
8 0063 1001 5 0.874 2.131 0.946
9 0090 0001 5 0.922 4.070 0.975
10 0131 0000 5 0.942 2.286 0.990
11 KDR12 aorta 5 0.929 0.496 0.978
12 KDR33 aorta 4 0.958 1.167 0.985
Ave. - - 0.918 1.947 0.974
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Simulation

Quantative analysis results are presented in Tables 4.3, 4.4 for 0D and 1D simulations,
respectively.

For 0D simulations on CT test data, flow and pressure errors were on average 1.1% and
1.0% at vessel caps, respectively. For MR test data, flow and pressure errors were, on average,
2.6% and 2.0% at vessel caps. Maximum errors were higher for flow than pressure, being on
average 3.3% and 6.2% compared to 1.2% and 2.8% for CT, MR datasets. For all but four
cases, maximum errors were under 5%. Of the four cases with maximum error over 5%, two
were CT (cases 3 and 6) and two were MR (cases 9 and 11).

For 1D simulation results on CT test data, flow and pressure errors were on average 0.9%
and 0.8%, respectively. Whereas they were higher for MR data, flow and pressure errors
were, on average, 8.0% and 3.6%, respectively. Maximum flow and pressure errors were,
on average, 3.0% and 1.4% for CT data and 24.2% and 5.1% for MR data. For four cases,
maximum errors for either flow or pressure were over 5%, cases 3, 7, 8, 10, three of which
were MR.

For further analysis of the error distributions, we plot their box plots in Figure 4.7, for
both 0D and 1D results. Note that each model branch cap translates to one data point in
Figure 4.7.

For qualitative comparison of the flow and pressure results over cardiac cycle, we plot
them for three cases in Figures 4.9,4.11,4.13 for 0D simulation and 4.10,4.12,4.14 for 1D
simulation. We chose the three cases that had the highest, median and lowest error values
when compared to ‘ground truth‘ simulation results. Figures 4.9,4.10 show results for case
7 (MR), which had highest errors, on average 20.7% for 1D simulation for example. The
median case is case 3 (CT), which had an average error of 2.48% and 3.6% for flow in 0D
and 1D simulation results, for example. The best case is case 2 (CT), with average flow and
errors of 0.1%, 0.07% and 0.27%, 0.21% for 0D and 1D, respectively.

Comparison with Second Observer

Since there exists variability between different modelers, the ‘ground truth‘ geometric models
can vary if made by another modeler. Therefore, we include additional analysis of the three
cases (worst, median, best) after another expert manually constructed them. We compare
the differences betweeen the 0D and 1D simulation results of the original ‘ground truth‘
models with these new ‘second observer‘ constructed models in Figure 4.8, see orange box
plots of errors. Figure 4.8 also shows the boxplots of the differences between the original
‘ground truth‘ and our automatically constructed ones, see blue box plots. As can be seen,
for 0D results, the errors we calculate for the SeqSeg models fall in the range of modeler
variability for flow for the worst and best cases, and for pressure for the median and best
cases. For 1D results, they only fall in the range for flow and pressure for the best case.
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Inspection of Example Cases

Besides quantitative evaluation, we also qualitatively inspected the worst performing branch
in the the least accurate simulation, case ID 7 in Tables 4.3, 4.4. For this branch, the relative
errors of flow and pressure in 1D simulation are 73.1% and 8.35%, and the respected errors
for 0D simulation are 1.21% and 2.27%. Shown in 4.5, we found that SeqSeg is under-
predicting the cross-sectional area while the manual created VMR appears to over-estimate
and approximated the branch entirely using circular contours.

Figure 4.5: Qualitative Inspection of the Worst performing branch; White contour: SeqSeg
surface; Blue contour: VMR surface

4.5 Discussion

We present an automatic method to get vascular blood flow reduced order model simulation
results, only requiring a seed point placement and boundary condition setting as inputs from
a user. The method takes in a medical image scan of patient, CT or MR scan, and a seed
point in the vasculature of interest and returns a geometric model using SeqSeg [113], and
once boundary conditions have been set at inflow and outlet caps, returns reduced order
model simulation results. We demonstrate both 0D and 1D simulation results, for both CT
and MR image data as input.

We demonstrate the method by training and testing on CT and MR datasets of aortic
and aortofemoral models. We evaluate the geometric models using Dice score, Hausdorff
distance and centerline overlap score. All segmentations achieved a Dice score over 0.88 and
centerline overlap score over 0.916, meaning over 91.6% of the ground truth centerline was
captured. After running 0D and 1D simulations on these automatically constructed models,
we compare the results to “ground truth“ results from the ground truth manually constructed
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Figure 4.6: Qualitative comparison of the geometric models constructed using machine learn-
ing method, SeqSeg, (left) and the manual ground truth model (right), for both CT and MR
test data. Numbering is consistent with Tables 4.3,4.4.
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Table 4.3: Quantitative error results for 0-D simulation. Error is calculated per branch as
time-averaged difference between ground truth and our method at cap; EQ: flow error, Ep:
pressure error. max is maximum error, min is minimum error and avg is the average across
all branches.

EQ Ep
Mod. Case Name min max avg min max avg

CT 1 0174 0000 0.0002 0.0006 0.0003 0.0001 0.0012 0.0006
2 0176 0000 0.0002 0.0017 0.0010 0.0001 0.0013 0.0007
3 0188 0001 aorta 0.0154 0.0990 0.0248 0.0167 0.0187 0.0179
4 O150323 2009 aorta 0.0002 0.0050 0.0015 0.0001 0.0031 0.0014
5 0139 1001 0.0032 0.0120 0.0059 0.0004 0.0102 0.0048
6 0146 1001 0.0135 0.0846 0.0308 0.0216 0.0373 0.0333

Ave. - 0.0054 0.0338 0.0107 0.0065 0.0120 0.0098

MR 7 0006 0001 0.0063 0.0450 0.0199 0.0071 0.0347 0.0275
8 0063 1001 0.0103 0.0434 0.0160 0.0136 0.0274 0.0214
9 0090 0001 0.0324 0.0909 0.0553 0.0020 0.0434 0.0195
10 0131 0000 0.0006 0.0159 0.0036 0.0002 0.0053 0.0016
11 KDR12 aorta 0.0374 0.1657 0.0555 0.0346 0.0449 0.0410
12 KDR33 aorta 0.0008 0.0190 0.0079 0.0097 0.0123 0.0114
Ave. - 0.0147 0.0620 0.0264 0.0112 0.0279 0.0204

models. On average, 0D simulation results from machine learning based models differed
less than 2.7% in pressure and flow values compared to results from manually constructed
“ground truth“ models. Similarly for 1D simulation results, calculated flow and pressure
values differed, on average, less than 0.87% and 3.6%, respectively.

Treating a manually constructed model as “ground truth“ adds analysis uncertainty
because of known modeler dependent variability[84, 93]. To investigate the variance in man-
ually constructed geometric models, we compare results from the original test set with ones
from three reconstructed models from a “second observer“. This second expert constructed
new models for the best, median and worst performing cases for comparison. We show that
the differences in 0D simulation results between two manually constructed models range up
to 6% in flow and 4% in pressure. A similar analysis for 1D simulations shows the differ-
ences up to 8% in flow and 3% in pressure. Regarding the worst performing 1D simulation
that showed a 73.1% error in flow and 8.35%, upon closer inspection, we found that SeqSeg
under-predicts vessel cross-sectional area while VMR over-estimates and only uses circular
contours. This would lead to discrepancies in 1D simulation because the 1D solver is highly
dependent on cross-sectional area and the sampling locations and methods [94]. Overall, for
the best case simulations, both pressure and flow values, and worst case flow values from
0D simulation, the differences between our ML based models and the original test set were
within the ranges of the differences between the two manually constructed models.
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Table 4.4: Quantitative error results for 1-D simulation. Error is calculated per branch as
time-averaged difference between ground truth and our method at cap; EQ: flow error, Ep:
pressure error. max is maximum error, min is minimum error and avg is the average across
all branches.

EQ Ep
Mod. Case Name min max avg min max avg

CT 1 0174 0000 0.0002 0.0018 0.0006 0.0004 0.0012 0.0008
2 0176 0000 0.0010 0.0041 0.0027 0.0003 0.0033 0.0021
3 0188 0001 aorta 0.0208 0.1442 0.0360 0.0230 0.0465 0.0271
4 O150323 2009 aorta 0.0003 0.0030 0.0011 0.0008 0.0026 0.0015
5 0139 1001 0.0008 0.0137 0.0072 0.0068 0.0144 0.0108
6 0146 1001 0.0010 0.0069 0.0027 0.0008 0.0091 0.0036

Ave. - 0.0046 0.0296 0.0087 0.0056 0.0139 0.0080

MR 7 0006 0001 0.0130 0.7314 0.2073 0.0210 0.1137 0.0672
8 0090 0001 0.0431 0.1255 0.0736 0.0332 0.0488 0.0403
9 0131 0000 0.0010 0.0219 0.0064 0.0004 0.0062 0.0031
10 KDR12 aorta 0.0667 0.2990 0.1006 0.0028 0.0797 0.0654
11 KDR33 aorta 0.0025 0.0299 0.0119 0.0005 0.0072 0.0037
Ave. - 0.0253 0.2415 0.0800 0.0116 0.0505 0.0359

By combining the low computation cost of reduced order models with rapid geometric
model construction using machine learning methods, we hope this method facilitates entry
of hemodynamic simulations into the clinical setting. The lack of automated model con-
struction methods is one of main factors hindering large patient cohort research studies and
clinical trials necessary for patient applications [3]. Furthermore, the lack of fully integrated
workflows going from medical image scan to simulation results further impedes research
and clinical applications because of their non trivial inconvenient setup. This work aims to
address this issue by an almost fully automated pipeline for hemodynamic reduced order
modeling.

Future directions of this work include further testing and validation. A main limitation
of the work presented is the small test set. Additionally, further comparison with other man-
ually constructed models is needed. In general, the field of patient-specific hemodynamic
modeling lacks a comprehensive study of modeler variability in geometric model construction
and its effect on downstream simulation results. This would allow for insightful analysis of
automated model construction methods with clear benchmarks of manual “gold standard“
model construction. Furthermore, we present a general comparison of flow and pressure val-
ues calculated from patient-specific reduced order models but for clinical applications, more
specific investigations must be done. Many hemodynamic simulation applications focus on
specific mechanical properties at particular locations, e.g. pressure drop across coronary
artery stenosis or wall shear stress inside aneurysms, making validation of automated work-



CHAPTER 4. MIROS: PATIENT-SPECIFIC REDUCED ORDER MODEL
SIMULATION IN MINUTES 72

(a) (b)

(c) (d)

Figure 4.7: Error results for test data; 0D reduced order model errors (top row) and 1D
reduced order model error (bottom row). (a), (c) show error in calculated flow and (b),
(d) show error in calculated pressure. Model indices are consistent with Tables 4.3,4.4 and
Figure 4.6.

flows, such as the one presented, for those specifics necessary.
Automated boundary condition setting was not explored in this work but is a potential

area of open research. In the presented workflow, the user must input seed points for ini-
tialization and define boundary conditions at inflow and outlet boundaries. Development of
methods to facilitate boundary condition choice and tuning would enable further automation
of the workflow.
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Figure 4.8: Comparing resulting errors of machine learning based constructed models (blue)
with errors between two manually constructed models (orange) for the cases that had worst
(MR case 1), median (CT case 3), and best (CT case 2) errors. Resulting errors are shown
for 0D (left) and 1D (right) simulations, for both flow and pressure values.
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(a)

(b)

Figure 4.9: 0D flow and pressure plots at all outlets for model 0006 0001, index 1 in Ta-
bles 4.3, 4.4, for which errors where the highest. Comparing the machine learning based
constructed model with a manually constructed one (ground truth).
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(a)
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Figure 4.10: 1D flow and pressure plots at all outlets for model 0006 0001, index 1 in
Tables 4.3, 4.4, for which errors where the highest. Comparing the machine learning based
constructed model with a manually constructed one (ground truth).
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(a)

(b)

Figure 4.11: 0D flow and pressure plots at all outlets for model 0188 0001 aorta, index 3 in
Tables 4.3, 4.4, for which errors where the median for all models. Comparing the machine
learning based constructed model with a manually constructed one (ground truth).
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(a)
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Figure 4.12: 1D flow and pressure plots at all outlets for model 0188 0001 aorta, index 3 in
Tables 4.3, 4.4, for which errors where the median for all models. Comparing the machine
learning based constructed model with VMR, a manually constructed one (ground truth).
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(a)

(b)

Figure 4.13: 0D flow and pressure plots at all outlets for model 0176 0000, index 2 in
Tables 4.3, 4.4, for which errors where the lowest for all models. Comparing the machine
learning based constructed model with a manually constructed one (ground truth).
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(a)

(b)

Figure 4.14: 1D flow and pressure plots at all outlets for model 0176 0000, index 2 in
Tables 4.3, 4.4, for which errors where the lowest for all models. Comparing the machine
learning based constructed model with VMR, a manually constructed one (ground truth).
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Chapter 5

VesselTrajNet: A Goal-Driven
Approach for Vasculature Prediction
in Medical Imaging

5.1 Abstract

Vasculature tracking is a fundamental problem in medical image analysis with critical ap-
plications in disease diagnosis, surgical planning, and interventional procedures. This task
shares conceptual similarities with human trajectory prediction, where motion history and
environmental context inform future path estimation. Inspired by advancements in trajec-
tory forecasting, we propose a novel approach that adapts a U-Net-based Gaussian heat
map encoder-decoder architecture, originally developed for human motion prediction, to the
problem of vessel tracking in medical images. By predicting multiple goals and trajectories,
the approach naturally captures vessel branching patterns without requiring explicit bifur-
cation detection. We evaluate our method, VesselTrajNet, on datasets of coronary artery
CT scans, demonstrating its effectiveness in accurately reconstructing vascular structures.
Our results suggest that trajectory-based modeling provides a promising framework for au-
tomated vasculature tracking, with potential applications in diagnostic and interventional
imaging.

5.2 Introduction

Blood vessel reconstruction from volumetric medical imaging is crucial for cardiovascular
healthcare, with applications in diagnostics, treatment planning, and research [55]. A key
aspect is path line construction (or centerline extraction), which outlines a graph or “skele-
tonization” of the vascular network. This path line often captures essential geometric and
topological information and is typically a prerequisite for full 3D vascular modeling. Despite
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its significance, automated and accurate vascular path line construction remains an open
challenge in medical imaging [83].

The challenges in vascular path line construction from volumetric image data stem from
several factors. Low image resolution, unclear lumen boundaries, medical image artifacts
and inconsistent dye distribution in angiography all contribute to making this a difficult
task.

Automated methods developed for path line extraction generally fall into two categories:
(1) 3D volumetric segmentation or centerline prediction and (2) iterative tracking. The
former analyzes the entire image volume but is computationally expensive and often produces
disconnected segments [127]. In contrast, iterative tracking predicts vessel progression locally,
using subvolume image features to determine direction and bifurcations. Machine learning
methods, such as CNN-based orientation classification [127] and graph neural networks [2],
have shown promise. However, these approaches often struggle with bifurcation detection,
as they rely on sequential “next direction” predictions.

Vessel tracking shares key similarities with trajectory prediction in other fields. Human
motion prediction, widely studied in computer vision and robotics [103], is essential for
intelligent agents like autonomous vehicles to navigate safely. These algorithms predict
future human movements by analyzing past trajectories and optional environmental inputs
like RGB images, segmentation, or encoded features such as lanes and traffic lights. Over
the past decades, data-driven machine learning approaches have tackled the challenge of
forecasting accurate trajectories while accounting for interactions, surroundings, and the
multimodal nature of human behavior—where multiple future paths are possible. Recent
advancements have significantly improved performance, including the approach of predicting
multiple goals first and conditioning trajectory predictions on these goals [70], and using a
heat map representation of trajectories to help neural networks reason about trajectory
history within an environment [69].

Building on advances in human motion prediction, we propose a goal-oriented tracking
approach for vascular structures. Just as humans may follow a single path or choose from
multiple possible paths to different destinations based on their environment, vessels can
continue as a single path or bifurcate into multiple branches. Instead of predicting the next
direction, we first predict multiple likely “goals” or endpoints for the trajectory. Based on
these endpoints, we generate one trajectory per goal. This framework naturally handles
bifurcations and more complex branching structures.

We present VesselTrajNet, a novel goal-oriented automated vascular tracking method.
We validate our approach using a dataset of coronary CT scans, demonstrating superior
performance compared to baseline methods. We also show our method’s ability to automati-
cally predict multiple trajectories for sub-volumes containing bifurcations. Most importantly,
this work, which to our knowledge is the first one to apply insights in human trajectory pre-
diction to vessel tracking, bridges two distinct research domains and reveals their underlying
synergies.



CHAPTER 5. VESSELTRAJNET: A GOAL-DRIVEN APPROACH FOR
VASCULATURE PREDICTION IN MEDICAL IMAGING 82

5.3 Related Work

Vasculature Tracking Methods Recursive vessel tracking typically combines seed point
placement with a growth method that analyzes local vessel features to determine direc-
tion. Early model-based approaches assume vessels as cylindrical segments fitted to image
data [12][29]. Other methods use minimal cost path optimization such as [19] though these
often require knowledge of start and end points. More recently, convolutional neural networks
(CNNs) have shown promise for vessel segmentation and centerline prediction [23][83][46].
[113] proposed tracking vessels using local 3D segmentations with post-processing for path
extraction, while [127] trained a CNN-based orientation classifier on local image volumes.
Extending this, [2] introduced a graph neural network for orientation prediction.

Computer Vision Trajectory Prediction For autonomous vehicles, forecasting the fu-
ture positions of road agents is a critical problem for safe and successful operation [40],[17].
Many of these approaches incorporate environmental context but rely highly structured na-
ture of the driving problem and incorporate parameterized scene elements such as lanes and
traffic lights [18],[106],[88],[108]. In contrast, human trajectory predictors [103] cannot rely
on structured environments with explicit lanes and traffic lights. Earlier approaches did not
incorporate the environment and relied on constant velocity models [8], or the past motion
history alone [44] [70]. A critical innovation from [70] proposed first predicting a distribu-
tion of trajectory endpoints, or goals, and then conditioning the full trajectory prediction
on the goals. More recent work incorporates the environment through RGB scene images,
originally as neural network features [49], [71]. A more recent approach, YNet [69], pro-
poses that neural networks can better combine image features with trajectory coordinates
when projecting the trajectories into Gausian heat maps of the same dimensions as the scene
segmentation. This approach, which also uses goal-conditioned trajectory prediction [70],
results in successful long-range predictions, and recent works have built on it to tackle even
more challenging, unstructured environments [120].

5.4 Methodology

The vascular tracking task is formulated as a trajectory forecasting problem; given a medical
image volume and a history of past np locations (in a sequential order), predict the nf future
locations. Therefore, the prediction is conditioned on two factors: the scene information
(i.e. image data values) and the history of prior points (i.e. the x, y, z coordinates). We
take a goal-driven approach to the problem. A goal is predicted first and then a trajectory
conditioned on the goal is produced. Both the goal and trajectory predictions have past
trajectory and scene information encoded.

Our method takes in a 3D medical image sub volume containing a blood vessel segment
and np past path points as an ordered list of 3D coordinates. However, we do future trajectory
prediction in 2D and therefore require to extract 2D slices of the image volume. We define
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the slicing planes using the tangent of the past path line points because we assume the next
points in the trajectory will be in (or close to) that plane. We define the planes such that they
intersect the last past path line point and have normals orthogonal to the tangent. Because
there exist infinitely many vectors orthogonal to the tangent in 3D, we set a parameter ns

for the number of planes to define and run prediction on. We take slices defined by different
angle θ in the cross sectional plane, see Figure 5.1 (a). Sufficient number of slices must be
extracted to ensure bifurcations are detected during prediction.

Past path line points are projected onto slicing planes and resampled to obtain np past
points. Figure 5.1 (b) illustrates vessel segmentation sliced along tangent, normal, and bi-
normal vectors computed from path line points, while (c) shows the corresponding raw image
slices with projected points. The image volume is also rotated so that the x-axis in 2D slices
aligns with the tangent (Figure 5.1 (c)), simplifying learning as trajectories consistently
move from “left” to “right.” All 2D slices are resampled to a fixed 400× 400 size, with x, y
coordinates scaled and shifted to a local coordinate system ranging from 0 to 400.

Figure 5.1: (a) 2D image slices taken using the tangent and center point for plane definition,
multiple planes defined by varying θ. (b) 3D vascular segmentation (red), ground truth path
line points and the image planes defined for 2D slicing. (c) The resulting 2D raw images
with path line points projected onto the planes, plane defined by path line normal (left),
plane defined by path line bi-normal (center), and cross sectional plane defined by the path
line tangent (right).

The vascular segmentation and past points are fed into our model, which uses the YNet
architecture proposed in [69]. The past trajectory points are represented as np separate
Gaussian heat maps. The heat maps are concatenated with the vascular segmentation and
fed into a U-Net style encoder, ES,P . The scene and history encoded features are fed into
two decoder networks a goal decoder network DG and future trajectory decoder network
DF . Features at different resolutions are fed into the goal decoder network, which then
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outputs a goal probability map. The probability distribution is sampled and represented as
a Gaussian heat map (similar to the history trajectory). This heat map is then resampled and
fed into the trajectory decoder at different stages along with the output features from encoder
ES,P . The output of the trajectory decoder is a nf channel tensor containing probability
maps of corresponding future point locations. The point coordinates are determined using
a softargmax operation. The overall model architecture is shown in Figure 5.2. Multiple
goals can be sampled, such as for bifurcation detection. A parameter ng is set for the
number of goals to be predicted. In that case, a trajectory is determined independently
for each goal using DF . Furthermore, we deploy a Test Time Sampling Trick (TTST)

which clusters the goal probability distribution and returns their centers as the ng goals.
Additionally during inference, we deploy Conditional Waypoint Sampling (CWS) which
favors trajectory predictions close to waypoint samples, for further details see [69].

Figure 5.2: Model architecture. The input is a sequence of np past points and a vessel
segmentation, both of which are encoded using the ES,P encoder. The encoded features are
passed to the goal decoder, DG, at different resolutions. The output goal probability map
is sampled and fed into the trajectory decoder, DF , which produces nf heat maps that are
converted to points by a softargmax operation.

During inference, we predict ng = 2 trajectories on ns = 10 planes defined by the path line
tangent, resulting in ng×nstrajectories per subvolume. Predictions are merged if their goals
overlap within a threshold t = 50; otherwise, a bifurcation is detected, and the trajectory
from the bifurcation plane is used. If no bifurcation is found, trajectories are averaged in 3D
space, returning a single path.
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For training we require a dataset of annotated 3D image volumes and corresponding path
lines. We extract 2D slices using the ground truth tangent in the center of the volume. We
resample the path line points to be a total of 20 and project them onto the image planes,
8 are used for history and 12 for future prediction. If there is a bifurcation, each trajectory
is processed independently. By taking multiple planes per volume, we get a larger dataset
of 2D images with corresponding trajectory points. We use a binary cross entropy loss with
Adam optimizer and learning rate of 0.0001. Training involves 300 epochs using an NVIDIA
Geforce RTX 2080ti GPU (11 GB GPU memory) on the Savio High Performance Computing
cluster at the University of California, Berkeley. Validation metrics (described below) are
used for checkpoint choice where training/validation split was 80/20% of trajectories.

5.5 Experimental Setup

We test our method on the ASOCA dataset of coronary artery CT scans with annotated
path lines and segmentation masks [31]. A total of 40 cases are used, 30 for training and 10
of which are kept aside for testing.

For evaluation, we use Average Displacement Error (ADE) and Final Displacement Error
(FDE), measured on future predicted trajectories against ground truth. ADE is the L2

distance between all predicted and ground truth trajectory points, while FDE is the L2

distance between the final predicted and ground truth points. Min k ADE/FDE is computed
by sampling k trajectories and reporting the best ADE/FDE.

We compare to several baseline methods:
Random prediction Sample nf random points in the image coordinate system (x, y ∈

[0, 400)).
K nearest neighbor (K ∈{1,3,10}) Find the nearest neighbor(s) in the training set

for the past trajectories and return the corresponding future, for K > 1 we average the
future trajectories.

Constant velocity Calculate the velocity vector between the last two points in history
and recursively add to predict next nf points.

Multilayer perceptron (MLP) neural network Train a 2 hidden layer MLP (dimen-
sions (100, 100)) on the training dataset trajectories.

All of our baseline methods only take the past history as input, and are not conditioned
on the image. We use ADE and FDE to evaluate our method and compare it to baseline
methods.

5.6 Results

Quantitative metric results with corresponding baseline values for ASOCA datset are shown
in Table 5.1. Random prediction gets an ADE score of 140.6, which can be viewed as an upper
bound. A constant velocity prediction achieves 35.7, much better than random generation,
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Table 5.1: Results from quantitative comparison between our method and several baselines
on ASOCA dataset test trajectories. For ADEmin, FDEmin: ng = 5

Method ADE (pixels) FDE (pixels) ADEmin (5) FDEmin (5)
Random 140.60 162.72 - -

Constant Velocity 35.74 58.90 - -
1 Nearest Neighbor 32.82 55.07 - -
3 Nearest Neighbor 26.78 44.46 - -
10 Nearest Neighbor 24.62 40.40 - -
MLP (2 HL, HD=100) 23.21 38.72 - -
Our w/o TTST, CWS 18.63 32.84 12.64 14.93
Our w/ TTST, CWS 16.13 24.09 11.48 10.74

and K-NN further outperforms with a minimum ADE of 24.6, for K = 10. Finally, a two
hidden layer MLP network obtains the best metric results of all baselines, a resulting ADE
value of 23.2. On average, our method obtains ADE metric scores of 18.6 with a single goal
prediction. However, when we allow for ng = 5 goals, we get a minimum ADE score of
12.6. Furthermore by using TTST,CWS during inference, we get 16.1 for ADE for single goal
prediction and a minimum of 11.5 for ng = 5 goals. The FDE results follow a similar trend
and in particular improves by approximately 8 when adding TTST and CWS during inference.
When compared to our baselines, our method outperforms all of them, improving on the
best baseline by approximately 30.5% in ADE and 37.8% in FDE score.

Figure 5.3 shows examples of predicted vascular trajectories using two goal prediction,
with corresponding ground truth for comparison. We show examples for high, median and
low metric scores. Figure 5.3 (top row, second from right) shows that sometimes when
the score computed with these metrics indicates a high error, the trajectory may still be
consistent with the image.

To evaluate bifurcation detection, we present qualitative examples in Figure 5.4. Each
case includes six 2D image planes (raw and segmentation masks) with corresponding past
and predicted future trajectories, highlighting where bifurcations were detected. For 3D
assessment, Figure 5.4 also displays the predicted 3D trajectory overlaid on the raw volu-
metric image data as an isosurface. During training, the model learns a goal probability map
capable of representing multiple paths simultaneously, effectively capturing bifurcations

A limitation of the 2D image slice approach described here is the dependence on 1) a well
defined tangent and 2) multiple image plane slices for bifurcation detection. This leads to
projected points and information loss which necessitates further post processing to aggregate
the multiple image plane predictions into one. This is particularly difficult when discerning
bifurcations from faulty trajectory predictions. To tackle highly branched vasculature, we
aim to investigate a 3D prediction framework instead. This would allow for direct bifurcation
prediction using a single forward pass on the 3D image volume directly, using multiple goals
similar the proposed 2D method.
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Figure 5.3: Two Goal Prediction. 2D trajectory prediction results overlaid in raw image
data, comparing with ground truth future and goals.

5.7 Conclusion

Despite its broad applicability in cardiovascular healthcare, automated vascular path line
construction remains unsolved. We introduce a goal-oriented deep learning tracking ap-
proach, adapted from human motion prediction, and validate it on coronary angiography
data. By leveraging similarities between these tasks, we highlight the potential for cross-
domain technique transfer.



CHAPTER 5. VESSELTRAJNET: A GOAL-DRIVEN APPROACH FOR
VASCULATURE PREDICTION IN MEDICAL IMAGING 88

Figure 5.4: Bifurcation prediction. History (blue) with predicted future trajectories (red)
using two goals (pink). Results are overlaid on raw image data (left) and vascular segmen-
tations (center), and after being post processed and visualized in 3D (right).
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Chapter 6

Conclusion

Patient-specific computational modeling of cardiovascular function is a powerful tool for the
diagnosis, understanding, and treatment of cardiovascular disease. However, current work-
flows are hindered by bottlenecks in constructing patient-specific geometries from medical
imaging, which limits scalability to large patient cohorts and delays clinical translation.

In this thesis, we developed deep learning–based tools to automate the construction of
patient-specific cardiovascular models. Namely, in Chapter 2 we introduce SeqSeg, an auto-
matic vascular tracking and segmentation method designed to address the time-consuming
and resource-intensive workflows that currently constrain large-scale studies and broader
clinical adoption. Requiring only a single seed point for initialization, SeqSeg enables rapid,
fully automated vascular model construction from CT or MR imaging data. Within minutes,
the method can produce a segmentation, surface mesh, and vessel centerline of the targeted
vasculature. We further demonstrate that SeqSeg not only outperforms existing state-of-the-
art vessel segmentation methods but also generalizes to vascular structures not present in
the training data. To facilitate accessibility and adoption, SeqSeg is released as open-source
software, with support for all major operating systems, including macOS, Windows, and
Ubuntu.

Many computational cardiovascular applications require integrated geometric models that
include both the cardiac chambers and major vascular branches, along with clearly defined
valve interfaces. In Chapter 3, we build upon the automated vascular modeling frame-
work by adding LinFlo-Net, a method for fully automated construction of comprehensive
cardiovascular models from medical imaging. To our knowledge, this represents the first
fully automatic approach capable of generating such models. We evaluate the method on
a dataset of CT images, demonstrating its effectiveness. By employing a dual modeling
strategy, template-based for cardiac structures and growth-based for vascular branches, we
highlight the value of anatomy-specific modeling approaches tailored to different components
of the cardiovascular system.

Workflows for patient-specific, physics-based vascular modeling typically face two major
bottlenecks: the construction of geometric models from medical imaging and the computa-
tional cost of running simulations with numerical solvers. In Chapter 4, we introduce MIROS
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(Medical Image to Reduced-Order Simulation), a framework that combines the automated,
rapid model construction of SeqSeg with the computational efficiency of reduced-order hemo-
dynamic models in SimVascular to enable patient-specific vascular simulations in minutes.
We demonstrate that, in most cases considered, simulation results based on SeqSeg-derived
models fall within the inter-observer variability of simulations based on manually constructed
geometries. MIROS is evaluated on both MR and CT datasets of the aorta and aortofemoral
vasculature. By significantly reducing both modeling and simulation time, MIROS represents
a step toward integrating hemodynamic modeling into clinical workflows for personalized di-
agnosis and treatment planning.

Finally, in Chapter 5, we build upon SeqSeg to explore a novel approach for vascu-
lar tracking that focuses on predicting vessel direction and identifying bifurcations. While
SeqSeg relies on pixel-wise classification for segmentation, its performance in detecting bifur-
cations can degrade in regions of low contrast or image artifacts. To address this limitation,
we draw inspiration from recent advances in human trajectory prediction and introduce
VesselTrajNet, a goal-oriented vascular tracking method. By framing tracking as a multi-
goal prediction task, VesselTrajNet inherently handles bifurcations without requiring explicit
detection, offering potential improved robustness in challenging imaging scenarios.

Patient-specific, physics-based computational modeling of the cardiovascular system holds
significant promise for advancing the diagnosis, investigation, and treatment of cardiovascu-
lar disease. What was once confined to academic research and theoretical modeling is now
beginning to enter clinical practice, with demonstrated benefits for patient care[30]. Still,
a major bottleneck preventing broader clinical adoption is the time-consuming process of
constructing anatomical models from medical imaging. This thesis addresses this challenge
by developing deep learning–based methods to automate its pipeline.

6.1 Future directions

This work represents a significant step toward the automatic construction of cardiovascular
geometries using deep learning. However, the problem remains far from fully solved. In this
final section, I outline several future directions that have the potential to build upon the con-
tributions presented here and further advance the integration of cardiovascular simulations
into clinical practice.

Improving segmentation performance The primary contribution of this thesis, Se-
qSeg, relies on neural network–based vascular segmentation. The current implementation
employs a U-Net architecture trained from randomly initialized parameters. However, there
is considerable room for improvement in the local segmentation component of SeqSeg.

First, alternative network architectures can be explored. Deep learning–based image seg-
mentation has advanced significantly in recent years, resulting in a range of architectures that
may outperform the current model. These include Feature Pyramid Networks (FPN)[60],
Pyramid Scene Parsing Network (PSPNet)[132], and nnU-Net[41], as well as attention-based
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models such as UNETR[90], TransUNet[14], Swin-UNETR[36], MISSFormer[39], and Atten-
tion U-Net[91]. These architectures remain to be evaluated for improving segmentation
accuracy on local vascular segments.

Second, segmentation performance could potentially benefit from transfer learning, in
which model training is initialized with pretrained weights obtained from related tasks or
datasets. Several studies have demonstrated that transfer learning can yield substantial
performance gains in medical image segmentation[114, 61, 15, 98, 129, 75].

Finally, current segmentation outputs are constrained by the resolution of the input
imaging data. However, this limitation is not intrinsic to the task. Future work could
explore predicting segmentations at a higher resolution than the input, which may reduce
voxel-level artifacts and yield more precise vessel boundary predictions.

Mesh post processing The primary goal of this work is to generate anatomically accu-
rate, patient-specific cardiovascular meshes suitable for physics-based simulations. However,
the current approach produces meshes that exhibit staircase artifacts, a consequence of the
underlying voxel-based pixel classification task. Developing improved post-processing meth-
ods for mesh extraction, such as refining the outputs of algorithms like marching cubes[64],
remains an open area for enhancement.

Going beyond pixel classification: signed distance fields, point clouds and meshes
Reformulating the task to move beyond voxel-wise classification presents a promising direc-
tion. Future work could explore training deep learning models to directly predict surface
meshes[59, 100, 124], point clouds[131, 62], or implicit representations such as signed dis-
tance fields[27, 10, 128]. These alternative representations have the potential to eliminate
voxel-induced artifacts and yield smoother, more geometrically faithful vascular models.

Integration with manual editing tools One key advantage of manual vascular model
construction is the flexibility it offers for making targeted edits. Given that automated
methods are unlikely to achieve perfect anatomical accuracy in all cases, particularly in
challenging regions, post hoc manual correction remains an important part of the modeling
pipeline. Integrating the automated methods developed in this thesis with existing man-
ual editing tools, such as those available in SimVascular, would significantly enhance their
practical utility. Such integration would not only support the creation of more anatomically
accurate models but also enable efficient correction of mislabeled training data. In turn,
this would lead to improved performance and generalizability of the deep learning models
by ensuring higher-quality supervision during training.

Utilizing deep learning to accelerate training data annotation A key limitation
of data-driven methods for vascular segmentation is the reliance on high-quality annotated
training data. For vascular model construction, this typically involves manual delineation
using tools such as SimVascular, CRIMSON, or similar software platforms. These manual
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workflows are time-intensive, often requiring hours or even days per case, which limits the
scale of most training datasets to just a few dozen patients. In addition, the acquisition of
medical imaging data is often restricted due to privacy regulations and institutional barriers,
further complicating the curation of robust training datasets.

However, the automated methods presented in this thesis may themselves serve as tools
to accelerate the generation of annotated data. By integrating these methods into existing
manual editing workflows, users could start from automated segmentations and perform only
minor corrections, rather than segmenting from scratch. This semi-automated approach has
been shown to substantially reduce annotation time. For example, recent work using deep
learning–assisted labeling frameworks such as MONAI Label, DeepEdit, and HAL-IA has
demonstrated annotation time reductions of 50–80% for pixel-wise segmentation tasks[21,
20, 56]. These tools could be extended to vascular model annotation, facilitating the creation
of larger and more diverse training datasets.

Automated vascular tracking In Chapter 5, we introduce VesselTrajNet, a deep learn-
ing–based model capable of automatically tracking vasculature. While its performance was
evaluated on standalone trajectory prediction tasks, its integration into SeqSeg for local
trajectory prediction has not yet been explored. Due to its goal-oriented formulation, Ves-
selTrajNet has the potential to outperform SeqSeg in challenging regions characterized by
low contrast, imaging artifacts, or uneven contrast distributions.

There are also opportunities to further improve the method. For instance, the current
implementation operates in 2D, but extending it to 3D volumetric prediction remains an
open direction for future research. Additionally, SeqSeg could benefit from incorporating
existing automatic tracking techniques, which have not yet been systematically evaluated
in this context. Methods such as [127, 105, 119, 34] could be adapted to enhance vessel
trajectory inference and model robustness.

Other medical imaging domains: ultrasound and time-series data This thesis has
primarily focused on static CT and MR imaging data. However, vascular geometry is often
dynamic, changing over time due to physiological processes such as cardiac motion (e.g.,
deformation of the coronary arteries) or pulsatile blood flow (e.g., expansion and contraction
of the aorta). Modeling vasculature across time using time-series imaging data remains a
largely open research area, though some work has been done for cardiac modeling[51]. This
task is significantly more complex due to the requirement for temporal consistency of mesh
indices across frames, which is critical for simulations and longitudinal analysis.

In addition, CT and MR imaging are resource-intensive and not universally accessible.
These modalities are predominantly available in well-resourced, high-income settings. To
extend the benefits of cardiovascular modeling to lower-cost and under-resourced regions,
it is essential to explore more accessible imaging modalities, such as ultrasound. However,
3D geometric modeling from ultrasound presents substantial challenges due to its primarily
2D acquisition, low signal-to-noise ratio, and operator variability. Emerging deep learning
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methods and recent advances in 2D-to-3D reconstruction from the field of computer vision
may offer promising solutions for generating anatomically accurate vascular models from
ultrasound data[130, 26].
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