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Introduction

Cardiovascular diseases are the leading cause of
death in the world. Cardiovascular bloodflow
simulations have become an important part of
cardiovascular research, giving key insights into
blood velocity, pressure and wall shear stress of
healthy and diseased blood vessels and hearts.
In order to set up a blood flow simulation, a
3D geometric model of the blood vessels must
first be constructed. One way to determine
these patient-specifically is by using medical im-
age scans of patients, i.e. CT or MR images.
The most common way to construct 3D mod-
els of vasculature is to represent the vessels as
connecting 1D lines in 3D space. These lines are
often referred to as centerlines. The full 3D mod-
els can then be built by estimating the width of
the vessel at each point along the centerline. The
generation of centerlines is called vessel tracing
and is the core problem of vasculature 3D model
generation.

Developing efficient vessel-tracing algorithms
is crucial for imaging-based diagnosis and
treatment of vascular diseases. This task often
requires multiple steps, the first of which being
image segmentation. The image segmentation
problem is formulated with an input 3D medical
image and an output being the segmentation
of the vessels. The segmentation can then be
post-processed to determine the direction of the
vessel at that point. Current work for vessel seg-
mentation consists of pixel-wise CNNs, U-Net,
etc. In this project, we leverage Transformers
for vessel tracing|

LOur code can be found here and here and our dataset
can be found here.

Our contributions are two-fold:

1. We were the first to introduce Transformers
to general 3D vessel image data;

2. We proposed a new task defining how to
trace vessels using machine learning algo-
rithms.

Related Work and Context

Medical image segmentation involves isolating
objects of interest in 2D or 3D images. In our
case, detecting blood vessels in data obtained
from magnetic resonance imaging (MRI) and
computed tomography (CT). Unlike typical im-
age tasks, segmentation requires prediction on a
pixel-by-pixel scale. This means that our net-
work must accept input of arbitrary dimension
and output an image of the same shape. The
fully convolutional neural network (FCNN) was
an important step in addressing this challenge.
FCNNSs are comprised solely of locally connected
layers, e.g. convolution, pooling, and upsam-
pling.

This model has two main shortcomings: the
network must be run separately for each pixel
and there is a tradeoff between localization ac-
curacy and the use of context. This is largely
due to FCNNs only having the ability to “con-
tract” the image data. The advent of U-Net in
2015 was a watershed moment in medical image
segmentation [1]. It addresses these problems by
adding an “expansion” path after the contrac-
tion, which allows the network to learn localized
classification information without sacrificing the
use of context. These two parts of the model
are almost symmetrical and form a “U” shape,
hence the name.

For decades, convolution-based networks like
U-Net were the standard in image classification


https://github.com/ZihanWang314/ViT-for-medical-image
https://github.com/numisveinsson/BloodVesselML3D.git
https://drive.google.com/drive/folders/1Vf-oONEnKTfIR0-Kx5ot02gIaSnGA44L
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tasks. However, the overwhelming success of
self-attention-based architectures on NLP tasks
quickly motivated researchers to begin explor-
ing its potential on images. The Vision Trans-
former (ViT) model is the first to demonstrate
that Transformers can replace standard convo-
lutions in deep neural networks on large-scale
image datasets rather than simply augmenting
them [2]. Although Transformer models tend
to be more data-hungry than their convolutional
counterparts, they are capable of learning more
long-range relationships.

With the success of ViT, U-Net was re-
visited and improved upon to eventually pro-
duce UNetFormer and UNetFormer+, which
use a Transformer encoder and CNN-based and
Transformer-based decoders, respectively [3].
In both cases, the encoder portion undergoes
self-supervised pretraining with a temporary
lightweight CNN decoder. Both achieve state-
of-the-art performance on common segmentation
benchmarks, with UNetFormer performing bet-
ter on smaller organs and UNetFormer+ per-
forming better on larger organs. However, UN-
etFormer+ is smaller and much more computa-
tionally efficient.

A member of our team is currently working
on a pipeline for automatic vasculature tracing
using local vessel segmentations from a U-Net
model. The segmentations are post-processed to
choose the next point to move to and the next
sub-volume to segment. Taking these local steps
allows for the construction of extensive vascu-
lar networks by only looking at one sub-volume
at a time. Previous work has sought to auto-
mate this process using convolution-based mod-
els, but nothing has been done in the way of
Transformer-based models [4].

This is related to a larger project in the Prof.
Shadden lab at UC Berkeley, website here. The
lab focuses on finite-element modeling for fluid
dynamic simulations of blood vessels and the
heart. As a part of this project, an open-source
software package has been developed called Sim-
Vascular, website here, as well as an open and
free repository of vascular models called the Vas-
cular Model Repository, available here [5].

Problem Statement and Goal

Vessel Tracing: The goal of blood vessel trac-
ing is to construct the vasculature centerlines.
There exist many ways to approach this prob-
lem, but for this project a sub-volume step-wise
method is chosen.

This method only looks at one small image
volume within the global vasculature tree at a
time. This sub-volume containing a vessel seg-
ment is processed to choose the next point in
the centerline by returning two variables, Vessel
Direction and Vessel Size, at the current point.
The direction is used to choose the next point
in the centerline and the vessel size is used to
determine the size of the next sub-volume to ex-
tract. Once the new point is determined, a new
sub-volume is extracted and processed, and so
forth.

In this project, two different processing meth-
ods will be explored via deep learning:

e Approach 1: Classification

The sub-volume is segmented into voxels be-
longing to vessel (1) or not belonging to
vessel (0). The binary segmentation can
then be converted into a surface mesh using
marching cubes and a centerline calculated
using the open-source Vascular Model Tool
Kit (VMTK) method, which can be found
here. This approach is highly dependent on
accurate segmentations, and that is where
neural networks will be applied. The post-
processing steps are deterministic using geo-
metric mathematical calculations, hence no
learning is currently utilized.

e Approach 2: Regression

Instead of the multiple steps involved in ap-
proach 1, the direction and size are directly
predicted from the image data using regres-
sion. Note that there is not always a single
vessel in a sub-volume, i.e. a bifurcation
may be present. For vessel tracing, our ulti-
mate goal is to create a model that can give
different directions to all branches present.
For simplicity, we additionally predict a bi-
nary bifurcation label.


https://shaddenlab.berkeley.edu
http://simvascular.github.io
https://www.vascularmodel.com
http://www.vmtk.org/index.html
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Goal: The project aims to use a Transformer-
based model to 1) segment local vasculature from
3D medical image volumes and 2) predict the
vessel orientation, size and bifurcation at a given
point.

Methods
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Figure 1: Our model architecture.

We propose a two-step procedure to predict the
relevant vascular information from the medical
images. First, we start from a local region of
the 3D model and use a Transformer encoder to
output the hidden state of the patched medical
image. For segmentation task, we use a Trans-
former decoder to decode the hidden states to
the size of the patches image, each pixel with a
probability to be the segmented vessel zone. For
the regression and classification tasks, we use a
hidden size x5 linear layer after the Transformer
encoder to regress on the direction of x, y, z, and
the radius of the vessel, and classify on bifur-
cation. We sum the loss functions of regression
and classification to train vessel tracking model,
but train the segmentation and vessel tracking
models separately.

Data Augmentation

We adopt conventional data augmentation meth-
ods for training. We augment each image by
rotating, mirroring and adding Gaussian noise.

We then use the original data point and ran-
domly sample three augmented data points for
training.

Pre-training

As Transformer models need a lot of data to
train, we also attempt to adopt pre-training
for the ViT model to overcome data scarcity.
Firstly, we perturb the training data with ran-
dom masking and Gaussian noise, and train a
masked-autoencoder Transformer model. We
then train a new model, using the pre-trained
encoder, for the relevant tasks and report the
results below.

Datasets

Our dataset consists of 101 3D models of vascular
networks constructed from medical images. 39
models were contructed from CT image stacks
and 62 from MR image data. They all come
from the free and open Vascular Model Reposi-
tory (VMR)[5]. An example of an image volume
with its respective 3D vascular model and cen-
terline can be seen in Figure [2]

Figure 2:  An example of an (a) image volume,
(b) 3D wasculature model and its (c) centerline.

Data Curation

Since the step-wise algorithm relies on taking lo-
cal steps, the training data must reflect that.
Firstly, the global volumes are sampled along
the known centerlines to obtain sub-volumes con-
taining local vascular segments. This sampling
procedure is shown in Figure [3{a). These sam-
ples of raw image data are the inputs to our
model. All sub-volumes are then resampled to be
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64x64x64 in resolution to keep the inputs stan-
dardized. There are key differences in the data
curation of labels based on the approaches we
compared:

e Task 1 - Classification: Identical global
volumes are obtained with binary labels,
1 for voxels within vessels and 0 outside.
To generate groundtruth for training, these
global volumes are sampled identically to
the raw image data. That way matching
pairs of raw image and binary labelled im-
ages are created.

e Task 2 - Regression: The ground truth
labels for this task are threefold:

1. The three components of the tangent
vector, normalized so the vector has a
length of one.

2. The size of the vessel as the maximum
enscribed radius (cm).

3. Binary label if the volume contains a
bifurcation (1) or not (0).

For each raw image sampling, the respective
information from the centerline is kept for
training.

In total, Table [I| shows the number of samples
obtained based on image modality.

Figure 3: How sampling is done along vascula-
ture to generate thousands of vessel segments to
train on, (a) samples for one vasculature and (b)
an example of a sample containing two points
representing the tangent vector in the center.

Sample Type Amount
CT - Training 11322
CT - Validation 1760
MRI - Training 16312
MRI - Validation 2902

Table 1: Number of samples obtained from the
101 vasculature models.

Loss Functions

A binary cross entropy (BCE) loss function is
used for the classification task. For the regres-
sion task, mean squared error (MSE) is used dur-
ing training.

Experiments

For the segmentation task, we compare the re-
sult of our method with a 3D U Net @ Both are
trained and tested on the same data. For the re-
gression task, since this is a newly proposed task
and there have not been other methods released
for the task, we report our results alone as a
baseline for future work.

Implementation Details

We use a starting learning rate of le-4, batch
size of 128, 0.01 stdev Gaussian noise, and train
for 400 epochs. We shrink the learning rate to
le-5 when the performance plateaus. For other
hyper-parameters, we tune in terms of number of
layers, attention heads, and hidden dimensions
sizes. Because traversing all setting takes an ex-
tremely long time, we searched on 8 different set-
tings, comparing every hyperparameter and us-
ing each variable’s best setting, which is: 6 lay-
ers, 4 heads, 2048 feed forward hidden size, using
data augmentation, using pre-training. Our ex-
periments are run on Nvidia-V100 GPUs.

Results

Results for can be seen in Table Pl and Table
Bl  Table 2 shows our best Dice score result
for vessel segmentation compared to an imple-
mentation of a 3D fully convolutional U-Net
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architecture |6]. Table [3| shows the results for
the regression task, the accuracy of predicting
bifurcations, and mean squared error for the
vessel size and tangent vector predictions. Plots
for the performance on the validation dataset
during training can be seen in Figure

Method  Average Dice

UNet-3D 0.761
Ours 0.806

Table 2: Comparison of Dice score for our
method and |a 3D U-Net implementation on the
same data.

P(%)
60.2

R(%)
76.5

RMSE, oq
0.11

RMSE e
0.39

Table 3: Results for the regression tracing task.
P / R is for precision and recall on the bifurcated
image as positive. RMSE computes the RMSE
errors of the wvessel radius and tangent vector.
We directly adopted the settings in Table[4] which
gave the best result.

Regression MSE Classification Accuracy Segmentation Dice

Figure 4: Plots for experiment results on valida-
tion set.

Ablation Study

We tune hyperparameters and control data aug-
mentation / pre-training on different settings.
The results can be seen in Table[dl Results show
that data augmentation and pre-training can
consistently enhance model performance, but the
pre-training does not help significantly. This
might due to the fact that we do not use un-
labelled data from outside of our dataset, and

the patterns the model learn from our current
dataset is valuable enough for generalization.

Settings Result
L/H/FF size,/ViT size/Aug/Pt Dice Score (%)

4, 4, 1024, 256, False, True 79.2
4, 4, 1024, 256, True, True 80.0
6, 4, 1024, 512, False, True 79.6
6, 4, 1024, 512, False, False 79.4
6, 4, 2048, 512, False, True 80.0
6, 4, 2048, 512, True, True 80.6
6, 4, 2048, 512, True, False 80.4
6, 8, 1024, 512, False, True 79.5
6, 8, 1024, 512, False, False 79.4

)

Table 4: Results for the segmentation task. L:
number of layers, H: attention heads, FF size:
hidden size for the feed forward layer, ViT size:
hidden size for the ViT encoder/decoder, Aug:
data augmentation, Pt: pre-training.

Discussion

In this paper, we demonstrate the first-ever use
of Transformers for general 3D tracing and the
first application of a Transformer-based 3D seg-
mentation model on general blood vessel data.
Our work is far more general than any previous
methodology in the area of vascular tracing.
While much attention has been paid to seg-
mentation, domain experts seeking to perform
tracing must still spend a significant amount
of time manually connecting the resultant sub-
Our work is an important first step
Eventually, meth-

volumes.
in automating this process.
ods like our could save countless of man-hours
that would instead be spent performing research.
These results will serve as a benchmark for future
researchers investigating the potential of Trans-
formers in centerline tracing.

Our segmentation results are also novel in
that they achieve better performance than popu-
lar convolution-based models like U-Net. While
there are few other papers addressing 3D seg-
mentation on vascular data, our method beats
state-of-the-art models that have been trained on


https://doi.org/10.48550/arxiv.1908.02182
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liver data, specifically (Dice scores of 80.6% vs
76.5%) [7]. The data that our model is trained
and evaluated on is more general; the arteries
come from various locations in the body. This
suggests that our Transformer-based segmenta-
tion model is more accurate and more robust
than current methods.

Potential Future Steps

Our model is entirely Transformer-based. The
creators of UNetFormer found that utilizing a
CNN-based decoder achieved better results on
small-scale organs, possibly because CNN layers
recover localized information that may not be
captured in Transformer layers. Modifying our
architecture in a similar manner may improve
segmentation on our very small sub-volumes.
This would still be an improvement over current
models in this area that are solely convolution-
based.

When performing vessel tracing, the true la-
bels for the orientation of the tangent vector as-
sume that the origin is in the center of the vessel.
Using this tangent vector to determine our next
step can be problematic when the center of the
3D image is not the same as the center of the ves-
sel. If we run into this issue for several steps, it is
possible that our algorithm can completely lose
sight of the vessel. In practice, the very small
size of the steps helps mitigate this problem, but
making the centerline algorithm more robust to
non-centered data is an interesting future direc-
tion.

Utilizing reinforcement learning methods or
deep learning training tricks could enable the al-
gorithm to self-correct when it begins to violate
the centered vessel assumption. Instead of es-
timating the tangent vector from the center of
the vessel, the model would estimate the vector
from the center of the 3D image that would best
capture the next sub-volume along the vessel.

Another potential improvement to predicting
the tangent vector is changing the loss function
to account for the fact that an exact opposite
tangent vector (parallel to ground truth but with
opposite direction) is just as correct for predict-
ing purposes. The current implementation re-

gards an opposite vector as wrong. For the clas-
sification task a Dice loss functions can be tested,
it has proven efficient for ill-balanced datasets
(such as medical image segmentation).
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