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Abstract

Blood flow simulations are proving to be an important
part of cardiovascular research. A key bottleneck in modern
simulation workflows is mesh generation. One solution is
to automatically trace and segment the blood vessels using
machine learning. The ability to predict the orientation of
a blood vessel is crucial for automatic vasculature tracing.
This paper explores the idea of using convolutional neural
networks to directly predict a mapped centerline in the voxel
grid. Results are promising but the accuracy is impacted
by class imbalance in the training data. Different training
data and loss functions are explored to solve this. Finally,
potential next steps are discussed.

1. Introduction

Cardiovascular diseases are the leading cause of death
in the United States. Computational blood flow simulations
have become an important part of cardiovascular research.
They play a crucial role in quantifying the flow, pressure
and wall shear stress within healthy and damaged blood ves-
sels, giving key insights for prevention and treatment plan-
ning of cardiovascular diseases.

In order to simulate flow through vasculature, re-
searchers must first construct a surface mesh representing
it. To do this, defining its domain in 3D space is necessary.
This is most often done using medical image scans, e.g CT
or MR images representing the patients body in 3D. Defin-
ing the blood vessel’s domain requires segmenting these im-
ages for the vasculature of interest. One popular approach
is to represent the blood vessels as 1D lines in 3D space
connected at certain locations. These lines will be reffered
to as centerlines for the purpose of this paper. Once the
centerline is determined, the boundaries of the blood ves-
sel can be determined in 2D perpendicular to it. These 2D
contours can then be interpolated to form the 3D mesh to
be simulated. The process of generating the blood vessel
centerlines is called tracing (or tracking).

1.1. Blood Vessel Tracing

In the past, blood vessel tracing was mostly done man-
ually preventing fast blood flow simulations. Recently, au-
tomatic blood vessel tracing has received increasing suc-
cess [2]. These automatic tracing algorithms often depend
on localized stepping, looking only at a sub-volume of the
image data at each given time. Calculations are performed
on these sub-volumes to determine the direction of the re-
spective blood vessel in order to choose the next step to
move to. In this work, we explore how convolutional neural
networks may assist in determining the vessel orientation.

1.2. Convolutional Neural Networks

Convolutional Neural Networks, CNN for short, have
proven immensely useful in many computer vision tasks.
One of these tasks is medical image segmentation.

The U-Net architecture [3] from 2015 proved especially
accurate for 2D medical image segmentation due to its U-
shaped structure. Images have a very high dimensional fea-
ture space and the U-Net architecture downsamples it to
lower dimensions using convolutions, capturing richer and
richer spatial information in fewer and fewer dimensions.
This part is called the encoder. This allows the network
to encode information about the whole image in few di-
mensions, e.g. how different tissues lie with respect to each
other. The second part of the U-Net is the decoder which
upsamples this lower dimensional space back to its original
resolution, ending with classification of pixels belonging to
different anatomies. This means that only important infor-
mation relating to segmentation is learned from the whole
image and kept in the lower dimensional space which is then
used for classification in the original resolution.

This paper aims at using this methodology to, instead of
classifying individual pixels of the medical image, to learn
a mapped blood vessel centerline directly.

1.3. Motivation

The aim of this work is to improve automatic blood ves-
sel tracing based on localized stepping. That means to re-
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turn useful information about the local sub-volume of in-
terest at any given step of the algorithm. In essence, the
best information to know is 1) the next point in 3D space
to move to, to stay within the blood vessel, and 2) the size
of the blood vessel in order to estimate the size of the next
sub-volume as to encompass the blood vessel within.

This work hopes to solve the former problem. Instead
of a single next point, the second best solution would be
the centerline of the vessel in the sub-volume. From the
centerline the next point can be estimated by taking either
at the end of it or at some point along it.

Predicting the local centerline is not an easy task how-
ever. The idea of this paper is to train a CNN to learn a
mapped version of the centerline in voxel space. This voxel
based mapped centerline means that voxels belonging to the
centerline have a high value and voxels further away from
the centerline have lower values. The motivation is that by
learning such a 3D voxel map of the centerline, that choos-
ing the next point can be a task of going in the direction of
lowest gradient, given that you are already on the center-
line. Taking the next step is therefore like walking along a
ridge of the mountain, staying within voxels of high value
(belonging to centerline) and keeping away from voxels of
lower values (further from centerline).

2. Method
The methodology of this work is divided into the follow-

ing: 1) the dataset and sampling used to create sub-volumes
for training, 2) how the centerline was mapped onto the
voxel grid within each sub-volume, 3) the neural network
architecture used, 4) the training procedure, and 5) some
additional modifications made in order to improve the re-
sults.

2.1. Dataset and Sampling

The dataset used in this work belongs to another project,
the Vascular Model Repository [5]. That includes 34 corre-
sponding CT medical image volumes, 3D vasculature mod-
els and centerlines. An example of a vasculature case can
be seen in Figure 1.

Since the tracing algorithm uses sub-volumes along the
centerline, the training data for the neural network needs to
represent that. The global 3D medical image volume was
therefore sampled along the centerline of its corresponding
vasculature model and saved. Two versions were extracted
at each instance: 1) the original medical image data and 2) a
binary segmentation of the sub-volume where 1s represent
voxels within the blood vessel and 0s outside. The binary
version is later used for the centerline mapping to create the
ground truth used for training.

The samples varied in centering and size. Some were
centered perfectly along the centerline while other were
shifted perpendicular to it. The sub-volume sizes varied

Figure 1. Dataset and Sampling. From left: medical image vol-
ume, 3D model of vasculature, centerlines of the 3D model, exam-
ples of sub-volumes sampled along the centerline.

Figure 2. Centerline mapping. The equation used to create the
ground truth for training. Image reused from [4].

as well, from barely capturing the lumen of the vessel, to
also including more 3D space around it. Both shift and size
are sampled from Gaussian distributions. This variance was
purposefully added to represent the variance that the tracing
algorithm encounters in practice. When tracing a vessel,
it does happen that the algorithm accidentally shifts away
from the centerline, or over/under-predicts the vessel size.
The neural network should be robust enough to that vari-
ance so that it still predicts an accurate centerline.

2.2. Centerline Mapping

Representing a centerline in 3D voxel space can be done
in many different ways. The most obvious one is bina-
rization of all voxels that the centerline touches. However,
Sironi et al. [4] found that encoding its information over
more voxels proved easier for a neural network to learn. The
idea being that a convolutional neural network is designed
to represent well information that involves more spatial res-
olution, e.g. semantic segmentation that includes classify-
ing each pixel. The centerlines of each sample was there-
fore mapped using Equation 1 where D(x) is the distance
a voxel has from the closest point on the centerline and dM
is the vessel radius.. Noteworthy is that the function value
decreases exponentially with distance, down to 0 where the
distance equals the radius of the vessel. Outside the vessel,
voxels get the value 0. The value a = 6 was used.

G =

{
e
a
(
1−D(x)

dM

)
− 1 if D(x) < dM

0 otherwise
(1)

An example of a data sample showing the sub-volume
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Figure 3. An example of a training data sample: 1) the image
data, 2) the true centerline crossing the volume, 3-4) the resulting
mapped centerline volume. The values range from blue (low) to
red (high). All background has value 0 and is not shown.

Figure 4. The 3D U-Net architecture used as introduced by Isensee
et al. Image reused from the same paper [1].

image data, the centerline crossing through the volume and
its mapping onto the voxel grid is shown in Figure 3.

2.3. Neural Network Architecture

The well-known U-Net was used for this work. A 3D
version with additional modifications made by Isensee et al.
was used [1]. The main difference being additional residual
paths introduced within the architecture to counter-act van-
ishing gradients and allowing information to flow to each
feature space more freely. The architecture can be seen in
Figure 4.

2.4. Training

Training samples were in total 25k and 15% were used
for validation. Testing samples were gotten from 5 vascula-
ture models not used in training. Training took place using
two GPUs on the Savio HPC cluster at UC Berkeley.

Two regression loss functions were initally used: mean
squared error, MSE, and mean absolute error, MAE. The
final decision of mean absolute value was made since it
is prone to be more robust to outliers. In our case, some
outliers outside the blood vessel may be ok since the main
purpose is to achieve an accurate centerline representation
of the blood vessel at large compared to the background
around it.

2.5. Modification 1 - Normalization

The first modification to the initial work was to normal-
ize the ground truth before training. If that it not done, then

Version Test Error

Original 2.8673
Normalized 0.0089
Normalized w/ Weighted Loss 0.0083

Table 1. Results on test set for the different versions. Error is mean
absolute error.

the ground truth proved to vary a lot between voxels and
samples, based on how far the centers of the voxels were
from the centerlines. Normalizing meant that all ground
truth samples ranged from 0 to 1.

2.6. Modification 2 - Weighted Loss

The second modification made was to weigh different
voxels in the prediction differently when computing the
loss. The reasoning being class imbalance. That means that
in the ground truth, a very small proportion of the overall
number of voxels belong to the vessel and have non-zero
values. That means that when all voxels are treated equally
for loss calculation, the background can overpower the loss
compared to the non-zero values of voxels belonging to cen-
terline. That can lead to the default value of predictions to
be close to 0, since the neural network manages to get a low
loss by predicting most of the voxels as background, since
most of them were. This is not a new problem in medi-
cal image segmentation and is the motivation for other loss
functions such as DICE loss which emphasizes the fore-
ground more compared to background. DICE is however
used in classification tasks and is therefore not applicable
here.

To counteract this, a new loss function was proposed and
tried. This loss function scaled the loss calculated at voxels
within the blood vessel by double so that they would count
more.

3. Results
The results are shown for the three different versions:

1. The original implementation with mapping ranging
from 0 to e6 − 1 = 402 and loss is MAE.

2. Normalized version with the mapping ranging from 0
to 1 and loss MAE.

3. Normalized version with weighted loss function.

3.1. Quantitative

The test error results can be seen in Table 1. A graph of
training loss for training and validation sets can be seen in
Figure 6.

Figure 7 shows histograms of ground truth compared to
predictions from the different versions.
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(a) The ground truth. (b) The original. (c) Normalized data. (d) Weighted loss.

Figure 5. Prediction example, comparison for the different versions. The true centerline is shown as white lines.

(a) The original. (b) Normalized data. (c) Weighted loss.

Figure 6. Training loss plotted each epoch for the three versions.
Validation loss is plotted in orange.

Figure 7. Histograms of values in the ground truth along with
predictions from the different versions.

3.2. Qualitative

Some examples of predictions are shown in Figure 5.
These results are important because of the eventual use of
these prediction for automatic tracing.

Figures 8 and 9 show how well the first and third ver-
sions did predictions on a test model. This was done by
random sampling along the centerline and predicting using
those sub-volumes.

Figure 8. Resulting predictions from model version 1 on the image
data sampled along the centerline of a test vasculature model. The
true centerlines are shown in white.

4. Discussion

The results show promise of the 3D U-Net architecture
to achieve low error values when learning to predict the cen-
terline mapped volumes. This is shown in Table 1.

Another takeaway is the performance of the multiple ver-
sions on predictions. Despite low error rates for all ver-
sions, the original implementation seems to beat the other
two qualitatively as seen in Figure 5. Figures 8 and 9 show
the same thing. The original implementation seems to be

4



Figure 9. Resulting predictions from model version 3 on the image
data sampled along the centerline of a test vasculature model. The
true centerlines are shown in white.

more accurate and return cleaner predictions. Noteworthy
is the difference in values for the two predictions. Figure 8
ranging to 250 but 9 to only 0.26. This difference might be
caused by over-fitting in training for third version. This kind
of difference in performance just because of normalization
is surprising since the neural network should in theory be
able to predict both functions.

Figure 5 shows the effect of increasing the weight on
voxels within the vessel compared to background since that
is the only difference between version 2 and 3.

Figure 7 shows the core of the problem at hand. The dis-
tribution targeted for learning by the U-Net is a severe long
tail distribution. That makes sense because of how area in-
creases with r2 and that’s how these values are determined.
The key to good predictions will therefore entail a way to
encourage the neural network to focus on the long tail in
more detail. That can be done by further changing the loss
function.

Potential next steps of this project are the following:

• Further changes to the loss function to emphasize the
necessary distribution within the blood vessel over the
background. Another idea is to incorporate a DICE
loss based on all voxels over a certain threshold e.g.
100.

• Retrain using version 1 but with a weighted loss func-

tion.

• Exploring other neural network architectures, espe-
cially ones proven useful for regression tasks.

• Find a better metric for evaluation. For example to
base it off of the gradients that the final prediction
gives since that is what is going to matter in the end
for tracing.

• Testing these results within the overall framework of
vasculature tracing. Are these results good enough for
localized stepping in the direction of lowest gradient?

• Explore different and better ways to represent bifurcat-
ing vessels. How can that information be encoded for
a localized stepping tracing algorithm?

In conclusion, the 3D U-Net architecture proved capable,
for the most part, to capture some of the centerline represen-
tation. Future work will need to focus on changing the loss
function further to counter class imbalance as well as testing
within a framework of localized stepping tracing algorithm
to fully evaluate the effectiveness of this method.

References
[1] Fabian Isensee and Klaus H. Maier-Hein. An attempt at beat-

ing the 3d u-net, 2019. 3
[2] Dengqiang Jia and Xiahai Zhuang. Learning-based algorithms

for vessel tracking: A review, 2020. 1
[3] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net:

Convolutional networks for biomedical image segmentation.
CoRR, abs/1505.04597, 2015. 1

[4] Amos Sironi, Vincent Lepetit, and Pascal Fua. Multiscale cen-
terline detection by learning a scale-space distance transform.
In 2014 IEEE Conference on Computer Vision and Pattern
Recognition, pages 2697–2704, 2014. 2

[5] Nathan M. Wilson, Ana K. Ortiz, and Allison B. Johnson. The
Vascular Model Repository: A Public Resource of Medical
Imaging Data and Blood Flow Simulation Results. Journal of
Medical Devices, 7(4), 12 2013. 040923. 2

5


	. Introduction
	. Blood Vessel Tracing
	. Convolutional Neural Networks
	. Motivation

	. Method
	. Dataset and Sampling
	. Centerline Mapping
	. Neural Network Architecture
	. Training
	. Modification 1 - Normalization
	. Modification 2 - Weighted Loss

	. Results
	. Quantitative
	. Qualitative

	. Discussion

